pandas删除缺失数据(pd.dropna()方法)

1.创建带有缺失值的数据库:

复制代码
import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(5, 3), index = list('abcde'), columns = ['one', 'two', 'three'])        # 随机产生5行3列的数据    
df.ix[1, :-1] = np.nan        # 将指定数据定义为缺失
df.ix[1:-1, 2] = np.nan

print('\ndf1')        # 输出df1,然后换行
print(df)        
复制代码

查看数据内容:

2.通常情况下删除行,使用参数axis = 0,删除列的参数axis = 1,通常不会这么做,那样会删除一个变量。

print('\ndrop row')
print(df.dropna(axis = 0))

 删除后结果:

阅读更多
个人分类: python 机器学习
上一篇基于概率论的分类方法--朴素贝叶斯04
下一篇jieba分词--01
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭