pandas数据清洗:drop函数案例详解、dropna函数案例详解、drop_duplicates函数案例详解

1 drop函数简介

drop函数:用来删除数据表格中的列数据或行数据

df.drop(labels=None,axis=0
        ,index=None
        ,columns=None
        ,inplace=False)
参数 简介
labels 以列表形式赋值,待删除的行名或列名,与axis参数一起使用
axis 确定删除行还是列,0为行,1为列
index 以列表形式赋值,删除第几行;不与labels和axis参数连用
columns 以列表形式赋值,删除第几列;不与labels和axis参数连用
inplace 是否用新生成的列表替换原列表

1.1 构建学习数据

df = pd.DataFrame(np.arange(16).reshape(4, 4),
                  columns=['A', 'B', 'C', 'D'])

在这里插入图片描述

1.2 删除行两种方法

方法一:使用index参数 []内是索引名,不是序号,要注意!
df.drop(index=[0,1],inplace=False)

方法二:使用labels和axis参数
df.drop(labels=[0,1],axis=0,inplace=False)

两者效果一样

在这里插入图片描述

1.3 删除列两种方法


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值