自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 资源 (2)
  • 收藏
  • 关注

原创 智能文本分类——三、特征工程与fasttext模型训练

学习目标:掌握如何进行fasttext模型的特征工程以及训练过程, 并实现它们.标准化模型训练流程进行fasttext模型的特征工程以及训练过程的七步诗3.1 获取训练语料获取训练语料过程的三步曲: 第一步: 明确原始数据来源.(1.网络爬虫;2.外部获取;3.内部提供,例如公司内容生产小组提供的各种类型的文章.) 第二步: 定义正负样本.(该类别文章句子作为正样本;其他类别文章句子作为负样本) 第三步: 提取正负样本语料.(先提取正样本语料,再在正样本基础上,提取正负样本语料..

2020-06-27 02:41:36 716

原创 install packages & pip 应用 & 虚拟环境

参考https://packaging.python.org/tutorials/installing-packages/#id7链接的目录1.确定python版本:命令行:python --version;shell(IPython & Jupyter notebook):# ensure that commands are run in the Python installation matching the currently running notebookIn [1]: .

2020-06-17 21:28:55 737

原创 在线医生——二总体框架和工具介绍

2.1 在线医生的总体架构架构图分析: 整个项目分为: 在线部分和离线部分 在线部分包括: werobot服务模块, 主要逻辑服务模块, 句子相关模型服务模块, 会话管理模块(redis), 图数据库模块以及规则对话/Unit模块. 离线部分包括: 结构与非结构化数据采集模块, NER模型使用模块, 以及实体审核模型使用模块. 在线部分数据流: 从用户请求开始, 通过werobot服务, 在werobot服务内部请求主服务, 在主服务中将调用会话管理数据库redis, 调用句子相关模型

2020-05-18 02:54:05 598

原创 apt-get和pip区别

参考https://www.cnblogs.com/zxqstrong/p/4780251.htmlUbuntu下apt-get与pip安装命令的区别1.区别:pip安装python相关的包,第三方库,包括各种版本;更新一种编程语言级别的包/库。apt-get安装软件,更新源/包,只安装最新版本即不能决定安装包的版本;更新系统级别的包。2.应用 apt-get $ sudo apt-get install/delete package$ sudo apt-get -f ins

2020-05-17 23:34:36 1133

原创 NLP案例学习(在线医生)——一、unit对话API应用

一、unit对话API应用1.1理解智能对话系统:任务导向型: 完成具有明确指向性的任务, 比如预定酒店咨询, 在线问诊等等. 非任务导向型: 没有明确目的, 比如算算术, 播放音乐, 回答问题,闲聊.1.2 Unit对话API的使用学习目标:了解Unit平台的相关知识.(Understanding and Interaction Technology)Unit平台是百度大脑开放的智能对话定制与服务平台, 也是当前最大的中文领域对话开放平台之一.掌握调用Unit API的实现过

2020-05-17 20:10:15 1135

原创 4车道线检测实现-4.1相机校正

学习目标了解相机的成像原理 了解相机标定的分类,原理和意义 了解图像畸变 知道相机标定过程中的坐标系 知道张氏标定法的原理及实现 了解双目校正4.0国内外检测车道线的方法主要有两类:一类是基于模型的检测方法,还有一类是基于特征的检测方法。基于模型的检测方法是将车道赋予一种合适的数学模型,并基于该模型对车道线进行拟合,原理就是在结构化的道路上根据车道线的几何特征为车道线匹配合适的曲线模型,在采用最小二乘法,Hough变换等方法对车道线进行拟合。常用的数学模型有直线型、抛物线模型以及样条曲线

2020-05-10 16:49:43 2241

原创 3.4.卡尔曼滤波器实战

学习目标了解filterpy工具包 知道卡尔曼滤波的实现过程 能够利用卡尔曼滤波器完成小车目标状态的预测1.filterpy简介FilterPy是一个实现了各种滤波器的Python模块,它实现著名的卡尔曼滤波和粒子滤波器。我们可以直接调用该库完成卡尔曼滤波器实现。主要模块包括: filterpy.kalman 该模块主要实现了各种卡尔曼滤波器,包括常见的线性卡尔曼滤波器,扩展卡尔曼滤波器等。 filterpy.common 该模块主要提供支持实现滤波的各种辅助函数,

2020-05-09 23:34:32 741

原创 3.3卡尔曼滤波器

1.卡尔曼滤波(Kalman)简介可看作一种运动模型。针对单目标和多目标进行位置预测的算法,并利用预测结果对跟踪目标进行修正,属于自动控制理论的一种方法。解决物理运动速度过快造成的关联错误现象。2.优点:采用递归方法解决线性滤波问题,只需要当前测量值和前一个周期预测值就能进行状态估计。不需要大量存储空间,计算量小,步骤清晰,适合计算机处理。3.原理介绍总结:滤波器根据上一时刻( k -1 时刻) 的值来估计当前时刻( k 时刻) 的状态,得到 k 时刻的先验估计值; 然后使用当前时刻的测

2020-05-09 22:00:30 1030

原创 3.1多目标追踪,3.2辅助函数

学习目标:了解多目标跟踪的常见的分类方法 了解在多目标跟踪中常用的运动模型 知道多目标跟踪的常用算法 能够实现两个目标框的交并比IOU 了解候选框在多目标跟踪中的表达方式及相应转换方法3.1多目标追踪(MOT,Multi-Object-Tracking)在一段视频中同时追踪多个目标。应用于安防监控和自动驾驶等领域。1. 分类:基于初始化方法:DBT:Detection-Based-Tracking基于检测的目标跟踪方法TBD(Tracking-by-dection);DBT.

2020-05-09 04:37:54 919

原创 3.车流量检测实现

学习目标了解多目标跟踪的实现方法 知道车流量统计的方法车流量统计主要有以下几种方式:该项目对输入的视频进行处理,主要包括以下几个步骤: 人工统计,需要消耗大量的人力且当工作人员在长时间计数后会因疲惫造成漏检或重复计数,统计结果具有不可验证性。 通过安装可接触式或不可接触式的传感器于路面进行车辆计数,可接触式传感器一般铺设于道路下方,当车辆经过时,传感器内部的电压,磁场或压力会发生变换弯成车辆计数。但这类传感器的安装和维护费用很高,现在已不再大量铺设。不可接触式的包括超声,红.

2020-05-09 02:22:06 7915 2

原创 2. CV—智能交通项目算法库简介

numba: python的加速工具包,对循环等函数的加速性能很高。给要优化的函数加上@jit优化器。from numba import jit@jitdef f(x, y): return x + yimutils:基于opencv的便利图像处理工具包。实现图像的平移,旋转,缩放,骨架化等一系列的操作。图像平移:translated = imutils.trans...

2020-05-08 22:51:30 883

原创 plt作图

1. 简介matplotlib是python中著名的2D绘图库2. APIimport matplotlib.pyplot as plt命令行式函数的集合plt.figure(figsize=None,g=facecolor=None)创建一个全局绘图区域 plt.subplot(nrows, ncols, index, **kwargs)图纸设置,在全局绘图区域中创建子图位置,图纸中有nrows行ncols列,index从左往右,从上到下,这是第几个 。plt.subplot...

2020-05-08 21:24:28 754

原创 CV—智能 交通项目算法库简介

1.智能交通作用:不仅能够提供实时的交通路况信息,帮助交通管理者规划管理策略,而且还能优化出行者的出行策略。还可以减轻交通道路的堵塞情况,降低交通事故的发生概率,提高道路运行的安全系数。2.本项目分两个模块: 一个是基于视频的车辆跟踪及流量统计,是一个可跟踪路面实时车辆通行状况,并逐帧记录不同行车道车流量数目的深度学习项目,在视频中可看出每个车辆的连续帧路径,该项目可拓展性强,可根据...

2020-05-08 08:51:20 1575 2

原创 jupyer notebook-——spyder

原英文官方文档:https://pythonhosted.org/spyder/参考文档:https://blog.csdn.net/qq_33793599/article/details/81359947

2019-10-29 23:09:47 263

原创 矩阵计算规则*(矩阵求导)

参考文档:https://blog.csdn.net/mounty_fsc/article/details/51588794

2019-09-10 15:31:42 1093

原创 Pytorch第七次作业

任务:组队学习说明:通过学习pytorch的基本操作,最终完成手写数字的识别任务路线:安装pytorch->设立图并计算->实现逻辑回归->构建多层神经网络->PyTorch实现L1,L2正则化以及Dropout->书写优化器代码->用PyTorch完成手写数字识别实现:下载数据,导入库对图像执行在自定义编辑,以便图像具有形同的尺寸和属性下载数...

2019-04-19 09:28:44 285

原创 Pytorch第四天

任务:PyTorch理解更多神经网络优化方法,了解不同优化器,书写优化器代码Momentum,二维优化,随机梯度下降法进行优化实现Ada自适应梯度调节法,RMSProp,Adam ,PyTorch种优化器选择作业:参考https://blog.csdn.net/u010089444/article/details/76725843SGD方法的一个缺点是其更新方向完全依赖于当前batch计算出的...

2019-04-16 19:42:10 255

原创 PyTorch实现L1,L2正则化以及Dropout(task5)

PyTorch实现L1,L2正则化以及Dropout(给代码截图参考)1.了解知道Dropout原理2.用代码实现正则化(L1、L2、Dropout)3.Dropout的numpy实现4.PyTorch中实现dropout参考代码:2.基础知识L1正则化:直接在原来的损失函数基础上加上权重参数的绝对值。由上式可知,当W大于0时,更新的参数w变小;当w小于0时,更新的参...

2019-04-14 20:26:41 436

原创 Pytorch第四天作业

任务:用PyTorch实现多层网络(给代码截图参考)引入模块,读取数据构建计算图(构建网络模型)损失函数与优化器开始训练模型对训练的模型预测结果进行评估实现:PyTorch搭建多层全连接神经网络实现MNIST手写数字识别分类(参考:https://blog.csdn.net/out_of_memory_error/article/details/81414986)1.全连接神经网络(...

2019-04-12 20:27:03 694

原创 Pytorch第三天学习

任务:PyTorch实现Logistic regressionPyTorch基础实现代码用PyTorch类实现Logistic regression, torch.nn.module写网络结构参考https://blog.csdn.net/dss_dssssd/article/details/83892824定义linear类:...

2019-04-10 21:11:48 163

原创 Pytorch学习第二天

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Ma...

2019-04-09 09:18:59 113

原创 Pytorch 概念和安装

1 PyTorch的基本概念(什么是Pytorch,为什么选择Pytorch?)Pytorch是一个基于torch以PYTHON优先的深度学习框架(python开源机器学习库),用于自然语言处理等应用程序不仅能够实现强大的GPU(graphics processing unit图形处理器)加速,还支持动态神经网络,这是很多主流框架(例如tensorflow)都不支持的。Pytorch既可以看作是...

2019-04-05 19:14:04 232

原创 Markdown编辑器使用指南

1 PyTorch的基本概念(什么是Pytorch,为什么选择Pytorch?)Pytorch是一个以PYTHON优先的深度学习框架,不仅能够实现强大的GPU(graphics processing unit图形处理器)加速,还支持动态神经网络,这是很多主流框架(例如tensorflow)都不支持的。Pytorch既可以看作是有GPU支持的numpy,看可以看作是有自动求导功能的深度神经网络。 ...

2019-04-05 17:44:04 173

3.4课件KalamFilter.py

"""利用卡尔曼滤波对小车的运动状态进行预测。主要流程: 导入相应的工具包 小车运动数据生成 参数初始化 利用卡尔曼滤波进行小车状态预测 可视化:观察参数的变化与结果"""

2020-05-09

图像变化imutils.py

介绍了opencv中imutils库的使用,图像转移,旋转,缩放,骨架提取,及matplot展示

2020-05-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除