向量数据库Milvus简单上手

本文介绍了Milvus中collection、entities和cluster的含义,collection类似关系型数据库的表,entities类似行,cluster指集群模式。还给出了Milvus Server的两种安装方式,即Docker安装Stand alone版本和pip安装Lite版本,以及Python SDK的使用,最后说明了连接服务器、创建和操作collection等基本操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Milvus,collectionclusterentities这几个术语有特定的含义:

  1. Collection

    • 一个collection是Milvus中存储向量数据的基本单位,类似于关系型数据库中的表(table)。每个collection由多个字段(field)组成,可以包含向量字段(用于存储向量数据)和标量字段(如数字、文本等用于存储描述性数据或元数据)。
    • 在上述代码中,创建了一个名为"hello_milvus"的collection,其中包含三个字段:主键字段pk(标识每个实体的唯一标识符)、一个双精度浮点数字段random以及一个浮点数向量字段embeddings
  2. Entities

    • entities是指存储在collection中的数据项,每个entity由一组字段值组成,可以理解为关系型数据库中的行(row)。在向量搜索和检索场景中,每个entity通常包含一个向量(如图像、文本的向量表示)和一些辅助信息(如ID、名称、其他描述性字段)。
    • 在上述代码示例中,每个entity都由一个唯一的pk、一个random值和一个8维的embeddings向量组成。这些entities被插入到"hello_milvus" collection中。
  3. Cluster

    • cluster在Milvus的上下文中通常指的是集群模式,即多个Milvus实例组成的集群,用于提高系统的可扩展性和可靠性。集群可以处理更大的数据量,提供更高的查询吞吐量,并支持容错和高可用性。
    • 集群部署可以根据实际需求配置,例如,可以配置读写分离、数据分片和副本,以满足不同的性能和可靠性要求。
    • 代码示例中没有直接提及到cluster的概念,但在实际部署中,Milvus可以配置为单实例模式或集群模式,以适应不同规模的应用需求。

总结来说,在Milvus中,collection是存储数据的容器,entities是collection中的数据项,而cluster指的是多个Milvus实例组成的集群环境。

安装

Server

二选一

Docker安装Stand alone版本

单机安装(非集群):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值