数据结构之B数和B+树

本文介绍了B树和B+树。B树是为磁盘等存储设备设计的平衡多路查找树,操作效率取决于访问磁盘次数。B+树是B树的变形树,非叶子节点只保存索引,数据存于叶子节点。B树和B+树主要用于文件系统和数据库索引,如MySQL的MyISAM和InnoDB存储引擎。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 本文转自:https://blog.csdn.net/whoamiyang/article/details/51926985

https://blog.csdn.net/zhuanzhe117/article/details/78039692

B树

简介

B/B+树是为了磁盘或其它存储设备而设计的一种平衡多路查找树(相对于二叉,B树每个内节点有多个分支),与红黑树相比,在相同的的节点的情况下,一颗B/B+树的高度远远小于红黑树的高度(在下面B/B+树的性能分析中会提到).B/B+树上操作的时间通常由存取磁盘的时间和CPU计算时间这两部分构成,而CPU的速度非常快,所以B树的操作效率取决于访问磁盘的次数,关键字总数相同的情况下B树的高度越小,磁盘I/O所花的时间越少.

B树的定义和性质:对于M阶的B树

  • 定义任意非叶子结点最多只有M个儿子;且M>2;
  • 根结点的儿子数为[2, M];
  • 除根结点以外的非叶子结点的儿子数为[M/2, M];
  • 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  • 非叶子结点的关键字个数=指向儿子的指针个数-1;
  • 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
  • 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  • 所有叶子结点位于同一层; 

 

 这里只是一个简单的B树,在实际中B树节点中关键字很多的.上面的图中比如35节点,35代表一个key(索引),而小黑块代表的是这个key所指向的内容在内存中实际的存储位置.是一个指针.

B+树

B+树是应文件系统所需而产生的一种B树的变形树(文件的目录一级一级索引,只有最底层的叶子节点(文件)保存数据.),非叶子节点只保存索引,不保存实际的数据,数据都保存在叶子节点中.这不就是文件系统文件的查找吗?我们就举个文件查找的例子:有3个文件夹,a,b,c, a包含b,b包含c,一个文件yang.c, a,b,c就是索引(存储在非叶子节点), a,b,c只是要找到的yang.c的key,而实际的数据yang.c存储在叶子节点上. 
所有的非叶子节点都可以看成索引部分

B+树的性质(下面提到的都是和B树不相同的性质)

  • 非叶子节点的子树指针与关键字个数相同;
  • 非叶子节点的子树指针p[i],指向关键字值属于[k[i],k[i+1]]的子树.(B树是开区间,也就是说B树不允许关键字重复,B+树允许重复);
  • 为所有叶子节点增加一个链指针.
  • 所有关键字都在叶子节点出现(稠密索引). (且链表中的关键字恰好是有序的);
  • 非叶子节点相当于是叶子节点的索引(稀疏索引),叶子节点相当于是存储(关键字)数据的数据层.
  • 更适合于文件系统; 
    看下图: 
    这里写图片描述
    非叶子节点(比如5,28,65)只是一个key(索引),实际的数据存在叶子节点上(5,8,9)才是真正的数据或指向真实数据的指针.

应用

B和B+树主要用在文件系统以及数据库做索引.比如Mysql;

在MySQL中,最常用的两个存储引擎是MyISAM和InnoDB,它们对索引的实现方式是不同的。

MyISAM 

  data存的是数据地址。索引是索引,数据是数据。

                                      

InnoDB

  data存的是数据本身。索引也是数据。

                                      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值