树的基本概念

树的定义:

01_树

由一个或多个(N≥0)结点组成的有限集合T,有且只有一个结点称为根(root),当N>1时,其他的结点分为M(M≥0)个互不相交的有限集合[T1, T2, T3 , … , TM]。每个集合本身又是棵树,被称为这个根的子树。

树的结构特点:

  • 非线性结构,有一个直接前驱,但可能有多个后继 (1:N)

  • 数的定义具有递归性,树中还有树;

  • 树可以为空,即节点个数为0。

树的相关概念:

  • 根:根结点(没有前驱)【A】

  • 叶子:终端结点(没有后驱)【K, L, F, G, M, I, J】

  • 森林:指m棵不相交的树的集合(例如删除A后的子树)

  • 有序树:结点各子树从左至右有序,不能互换

  • 无序树:结点各子树可互换位置

  • 双亲: 即该结点的上层结点(直接前驱)parent

  • 孩子: 即该结点的下层结点(直接后驱)child

  • 兄弟:同一双亲下的同层结点(孩子之间互称兄弟)

  • 堂兄弟:即双亲位于同一层的结点(非同一双亲)

  • 祖先:即从根到该结点所经分支的所有节点 【A, B, E 都为K的祖先,是一个集合】

  • 子孙:即该结点下层子树中的任一结点

知识点:
  • 结点:即数的数据元素

  • 结点的度: 结点挂接的子树数量(有几个直接后继就是有几个度)【 A结点的度:3(B, C ,D)】

  • 结点的层次:从根到该结点的层数【 A:第一层;B, C, D:第二层 … 】

  • 终端结点:即度为0的结点,即叶子

  • 分支结点:出树根以外的结点(也称内部结点)【除A以外都是分支节点】

  • 树的度:所有节点中的最大值【Max(各结点的度)】

  • 树的深度:指所有结点中最大的层数【Max(各结点的层次)】

上图中的结点数 = 13,树的度 = 3, 树的深度 = 4。

树的表示:左孩子右兄弟表示法

目的: 将一颗多叉树转为一颗二叉树;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值