1.递归和非递归分别实现求第n个斐波那契数。
非递归:
int FibNotRecursion(int n)
{
if (n < 1)
{
printf("输入不合法");
return -1;
}
int preNum = 1;
int prePreNum = 1;
int result = 1;
for (int i = 2; i < n ; i++)
{
result = preNum + prePreNum;
prePreNum = preNum;
preNum = result;
}
return result;
}
递归:
int FibRecursion(int n)
{
if (n < 1)
{
printf("输入不合法");
return -1;
}
if (n == 1 || n == 2)
{
return 1;
}
return FibRecursion(n - 1) + FibRecursion(n - 2);
}
2.编写一个函数实现n^k,使用递归实现
double MyPow(int n, int k)
{
if (k == 0)
return 1;
if (k > 0)
{
return MyPow(n, k - 1) * n;
}
else
{
return MyPow(n, k + 1) * (double)(1.0 / n);
}
}
3. 写一个递归函数DigitSum(n),输入一个非负整数,返回组成它的数字之和,
例如,调用DigitSum(1729),则应该返回1+7+2+9,它的和是19
int DigitSum(int n)
{
if (n < 0)
{
printf("输入不合法");
return -1;
}
if (n > 9)
{
return DigitSum(n / 10) + n % 10;
}
return n % 10;
}
4. 编写一个函数 reverse_string(char * string)(递归实现)
实现:将参数字符串中的字符反向排列。
要求:不能使用C函数库中的字符串操作函数。
extern int MyStrlenRecursion(char* str);
void reverse_string(char * string)
{
int len = MyStrlenRecursion(string);
if (len <= 1)
return;
else
{
char temp = string[0];
string[0] = string[len - 1];
string[len - 1] = '\0';
reverse_string(string + 1);
string[len - 1] = temp;
}
}
这里用到了一个求字符串长度的函数,写在下面。
5.递归和非递归分别实现strlen
//递归
int MyStrlenRecursion(char* str)
{
if (str[0] == '\0')
{
return 0;
}
return MyStrlenRecursion(str + 1) + 1;
}
//非递归
int MyStrlenNotRecursion(char* str)
{
int len = 0;
for (int i = 0; str[i] != '\0'; i++)
{
len++;
}
return len;
}
6.递归和非递归分别实现求n的阶乘
//非递归
int Factorial(int n)
{
int result = 1;
if (n < 0)
{
printf("输入不合法");
return -1;
}
if (n == 0) return result;
for (int i = 1; i <= n; i++)
{
result *= i;
}
return result;
}
//递归
int FactorialRecursion(int n)
{
if (n < 0)
{
printf("输入不合法");
return -1;
}
if (n == 1 || n == 0)
{
return 1;
}
return FactorialRecursion(n - 1) * n;
}
7.递归方式实现打印一个整数的每一位
void PrintNumber(int n)
{
if (n > 9)
{
PrintNumber(n / 10);
}
printf("%d\n", n % 10);
}