YOLOv5模型介绍
YOLOv5 是一个用于对象检测的先进模型,其结构包含了多个关键技术组件。以下是 YOLOv5 中每层用到的技术的详细解释:
输入端:
- Mosaic数据增强:
一种数据增强方法,通过随机裁剪、缩放和拼接多张图片,形成一张新的图片,既丰富了数据集又增加了小样本目标,提升了网络的训练速度。此方法在训练时一次性计算4张图片的数据,降低了模型对内存的需求。
骨干网(Backbone):
- CSP-Darknet53:
Darknet53的变体,用于特征提取。CSP(Cross Stage Partial)结构是YOLOv5引入的,用于在保持性能的同时减少计算量。
由Focus结构 以及 CSP结构 组成
YOLOv5的骨干网(Backbone)是其网络结构的重要组成部分,主要负责从输入图像中提取丰富的特征信息。以下是YOLOv5骨干网的详细解析,结合相关信息进行归纳和分点表示:
-
骨干网概述
YOLOv5的骨干网采用了CSP(Cross Stage Pa