YOLOv5模型介绍与改进

YOLOv5模型介绍

YOLOv5 是一个用于对象检测的先进模型,其结构包含了多个关键技术组件。以下是 YOLOv5 中每层用到的技术的详细解释:

输入端:

  • Mosaic数据增强:
    一种数据增强方法,通过随机裁剪、缩放和拼接多张图片,形成一张新的图片,既丰富了数据集又增加了小样本目标,提升了网络的训练速度。此方法在训练时一次性计算4张图片的数据,降低了模型对内存的需求。

骨干网(Backbone):

  • CSP-Darknet53:
    Darknet53的变体,用于特征提取。CSP(Cross Stage Partial)结构是YOLOv5引入的,用于在保持性能的同时减少计算量。

由Focus结构 以及 CSP结构 组成

YOLOv5的骨干网(Backbone)是其网络结构的重要组成部分,主要负责从输入图像中提取丰富的特征信息。以下是YOLOv5骨干网的详细解析,结合相关信息进行归纳和分点表示:

  1. 骨干网概述
    YOLOv5的骨干网采用了CSP(Cross Stage Pa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陆小马

赏个核桃让我补补脑呗!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值