MUSIC算法详解

接收信号模型

在这里插入图片描述

假设目标1在点A处信号模型为: x 1 [ t ] = e j 2 π f t (1) x_1[t] = e^{j2\pi f t} \tag1 x1[t]=ej2πft(1)
因为: λ = c f \lambda = \frac{c}{f} λ=fc,所以经过路径L后相位变化为: φ = 2 π f L c φ =2 \pi f \frac{L}{c} φ=2πfcL
则经过距离L后到达天线1的信号模型为: y [ t ] = A . x 1 [ t ] . e j 2 π f L c (2) y[t] = A.x_1[t].e^{j 2 \pi f \frac{L}{c}} \tag2 y[t]=A.x1[t].ej2πfcL(2)
假设阵列有 n 个天线,假设他们之间间隔固定为d,经过时间延迟后,到达不同天线的距离为:
{ L 0 = L L 1 = L + d . c o s ( θ ) ⋮ L n = L + ( n ) ∗ d . c o s ( θ ) (3) \begin{cases} L_0 = L\\ L_1 = L + d.cos(\theta)\\ \vdots\\ L_n = L + (n)*d.cos(\theta)\\ \end{cases} \tag3 L0=LL1=L+d.cos(θ)Ln=L+(n)d.cos(θ)(3)

对应天线在不同时刻接收到的信号模型为:
{ y 1 [ τ ] = A 1 . x 1 [ t ] . e j 2 π f L 1 c y 2 [ τ ] = A 2 . x 1 [ t ] . e j 2 π f L 2 c ⋮ y n [ τ ] = A n . x 1 [ t ] . e j 2 π f L n c (4) \begin{cases} y_1[\tau] = A_1.x_1[t].e^{j 2 \pi f \frac{L_1}{c}}\\ y_2[\tau] = A_2.x_1[t].e^{j 2 \pi f \frac{L_2}{c}}\\ \vdots\\ y_n[\tau] = A_n.x_1[t].e^{j 2 \pi f \frac{L_n}{c}}\\ \end{cases} \tag4 y1[τ]=A1.x1[t].ej2πfcL1y2[τ]=A2.x1[t].ej2πfcL2yn[τ]=An.x1[t].ej2πfcLn(4)

A表示在不同的路径传输引起接收支路之间的幅度不平衡因素,在这里考虑到的是天线方向图在相同方位处的增益不一致,信号在内部通道之间传输的幅度响应不一致。

不同的距离引起的相位差增益在不同的天线处表示为:
{ ϕ 0 = 1 ϕ 1 = e j 2 π f d × c o s ( θ ) c ϕ 2 = e j 2 π f 2 × d × c o s ( θ ) c = { e j 2 π f d × c o s ( θ ) c } 2 ⋮ ϕ n = { e j 2 π f d × c o s ( θ ) c } n (5) \begin{cases} \phi_0 = 1\\ \phi_1 = e^{j 2 \pi f \frac{d×cos(\theta)}{c}}\\ \phi_2 = e^{j 2 \pi f \frac{2×d×cos(\theta)}{c}}=\{e^{j 2 \pi f \frac{d×cos(\theta)}{c}}\}^2 \\ \vdots\\ \phi_n = \{e^{j 2 \pi f \frac{d×cos(\theta)}{c}}\}^n \\ \end{cases} \tag5 ϕ0=1ϕ1=ej2πfcd×cos(θ)ϕ2=ej2πfc2×d×cos(θ)={ej2πfcd×cos(θ)}2ϕn={ej2πfcd×cos(θ)}n(5)

假设: γ i = A i ∗ e j 2 π f L c \gamma_i=A_i*e^{j 2 \pi f \frac{L}{c}} γi=Aiej2πfcL,我们假设,每个接收支路的天线在相同方向的增益一致,内部信号传输通道幅度被校准到一致,则 A 0 → A n A_0→A_n A0An的值都是一致。

将以上公式进行符号简化:
{ y 0 [ τ ] = γ 1 . x 1 [ t ] . ϕ 0 y 1 [ τ ] = γ 1 . x 1 [ t ] . ϕ 1 y 2 [ τ ] = γ 1 . x 1 [ t ] . ϕ 1 2 ⋮ y n [ τ ] = γ 1 . x 1 [ t ] . ϕ 1 n (6) \begin{cases} y_0[\tau] = \gamma_1.x_1[t].\phi_0 \\ y_1[\tau] = \gamma_1.x_1[t].\phi_1 \\ y_2[\tau] = \gamma_1.x_1[t].{\phi_1}^2 \\ \vdots\\ y_n[\tau] = \gamma_1.x_1[t].{\phi_1}^n\\ \end{cases} \tag6 y0[τ]=γ1.x1[t].ϕ0y1[τ]=γ1.x1[t].ϕ1y2[τ]=γ1.x1[t].ϕ12yn[τ]=γ1.x1[t].ϕ1n(6)

Music算法模型
多信号情况下的信号模型

假设信号个数为 j j j
{ y 0 [ τ ] = γ 1 . x 1 [ t ] + γ 2 . x 2 [ t ] . . . + γ j . x j [ t ] y 1 [ τ ] = γ 1 . x 1 [ t ] . ϕ 1 + γ 2 . x 2 [ t ] . ϕ 2 . . . + γ j . x j [ t ] . ϕ j y 2 [ τ ] = γ 1 . x 1 [ t ] . ϕ 1 2 + γ 2 . x 2 [ t ] . ϕ 2 2 . . . + γ j . x j [ t ] . ϕ j 2 ⋮ y n [ τ ] = γ 1 . x 1 [ t ] . ϕ 1 n + γ 2 . x 2 [ t ] . ϕ 2 n . . . + γ j . x j [ t ] . ϕ j n (7) \begin{cases} y_0[\tau] = \gamma_1.x_1[t] +\gamma_2.x_2[t] ...+ \gamma_j.x_j[t]\\ y_1[\tau] = \gamma_1.x_1[t].\phi_1 + \gamma_2.x_2[t].\phi_2 ...+ \gamma_j.x_j[t].\phi_j\\ y_2[\tau] = \gamma_1.x_1[t].{\phi_1}^2 + \gamma_2.x_2[t].\phi_2^2 ...+ \gamma_j.x_j[t].\phi_j^2\\ \vdots\\ y_n[\tau] = \gamma_1.x_1[t].{\phi_1}^n+\gamma_2.x_2[t].\phi_2^n ...+ \gamma_j.x_j[t].\phi_j^n\\ \end{cases} \tag7 y0[τ]=γ1.x1[t]+γ2.x2[t]...+γj.xj[t]y1[τ]=γ1.x1[t].ϕ1+γ2.x2[t].ϕ2...+γj.xj[t].ϕjy2[τ]=γ1.x1[t].ϕ12+γ2.x2[t].ϕ22...+γj.xj[t].ϕj2yn[τ]=γ1.x1[t].ϕ1n+γ2.x2[t].ϕ2n...+γj.xj[t].ϕjn(7)

假设对多天线进行了m次的信号采样,则采样矩阵如下表示
则可以转换成矩阵的方式进行表示为:

[ y [ 0 ] 0 y [ 1 ] 0 y [ 2 ] 0 . . . y [ m ] 0 y [ 0 ] 1 y [ 1 ] 1 y [ 2 ] 1 . . . y [ m ] 1 ⋮ y [ 0 ] j y [ 1 ] j y [ 2 ] j . . . y [ m ] j ] = [ ϕ 1 0 ϕ 2 0 . . . ϕ j 0 ϕ 1 1 ϕ 2 1 . . . ϕ j 1 ⋮ ϕ 1 n ϕ 2 n . . . ϕ j n ] × [ γ 1 . x 1 [ 1 ] γ 1 . x 1 [ 2 ] . . . γ 1 . x 1 [ m ] γ 2 . x 2 [ 1 ] γ 2 . x 2 [ 2 ] . . . γ 2 . x 2 [ m ] ⋮ γ j . x j [ 1 ] γ j . x j [ 2 ] . . . γ j . x j [ m ] ] (8) \begin{bmatrix} y[0]_0 & y[1]_0 & y[2]_0 ... y[m]_0\\ y[0]_1 & y[1]_1 & y[2]_1 ... y[m]_1\\ \vdots\\ y[0]_j & y[1]_j & y[2]_j ... y[m]_j\\ \end{bmatrix}= \begin{bmatrix} \phi_1^0 & \phi_2^0 & ...& \phi_j^0 \\ \phi_1^1 & \phi_2^1 & ...& \phi_j^1 \\ \vdots\\ \phi_1^n & \phi_2^n & ...& \phi_j^n \\ \end{bmatrix} × \begin{bmatrix} \gamma_1.x_1[1] &\gamma_1.x_1[2] &...& \gamma_1.x_1[m]\\ \gamma_2.x_2[1] &\gamma_2.x_2[2] &...& \gamma_2.x_2[m]\\ \vdots\\ \gamma_j.x_j[1] &\gamma_j.x_j[2] &...& \gamma_j.x_j[m]\\ \end{bmatrix} \tag8 y[0]0y[0]1y[0]jy[1]0y[1]1y[1]jy[2]0...y[m]0y[2]1...y[m]1y[2]j...y[m]j = ϕ10ϕ11ϕ1nϕ20ϕ21ϕ2n.........ϕj0ϕj1ϕjn × γ1.x1[1]γ2.x2[1]γj.xj[1]γ1.x1[2]γ2.x2[2]γj.xj[2].........γ1.x1[m]γ2.x2[m]γj.xj[m] (8)

将以上矩阵进行简化:
Y = Φ X (9) Y=\Phi X \tag9 Y=ΦX(9)
Y Y Y矩阵是已知的采样点,最终的目的是求 Φ \Phi Φ;
正常情况下 Φ \Phi Φ= Y X − 1 Y X^{-1} YX1在这里的最困难的点是 X X X矩阵的值是未知的。

对信号的预先处理

对于信号的处理,可以从两方面进行考虑:

1)Amphtude
2)Phase

假设对一个信号的幅度和相位进行调整,综合为: C = a × e j ϕ C = a × e^{j\phi} C=a×ejϕ
假设对信号进行调整并叠加后
y 1 × C 1 + y 2 × C 2 . . . y j × C j = 0 (10) y_1 × C_1 + y_2×C_2 ... y_j×C_j = 0 \tag{10} y1×C1+y2×C2...yj×Cj=0(10)
将式子10 ,代入式子7中,并简化,可得:
{ γ 1 C 1 + γ 1 ϕ 1 C 2 + γ 1 ϕ 1 2 C 3 . . . + γ 1 ϕ 1 j − 1 C j } x 1 + { γ 2 C 1 + γ 2 ϕ 2 C 2 + γ 1 ϕ 2 2 C 3 . . . + γ 2 ϕ 2 j − 1 C j } x 2 + ⋮ { γ m C 1 + γ m ϕ m C 2 + γ m ϕ m 2 C 3 . . . + γ m ϕ m j − 1 C j } x j + = 0 (11) \begin{matrix} \{\gamma_1 C_1 + \gamma_1 \phi_1 C_2 + \gamma_1 \phi_1^2 C_3 ... +\gamma_1 \phi_1^{j - 1} C_j \} x_1 + \\ \{ \gamma_2 C_1 + \gamma_2 \phi_2 C_2 + \gamma_1 \phi_2^2 C_3 ... +\gamma_2 \phi_2^{j - 1} C_j \} x_2 +\\ \vdots\\ \{ \gamma_m C_1 + \gamma_m \phi_m C_2 + \gamma_m \phi_m^2 C_3 ... +\gamma_m \phi_m^{j - 1} C_j \} x_j + \\ \end{matrix} = 0 \tag{11} {γ1C1+γ1ϕ1C2+γ1ϕ12C3...+γ1ϕ1j1Cj}x1+{γ2C1+γ2ϕ2C2+γ1ϕ22C3...+γ2ϕ2j1Cj}x2+{γmC1+γmϕmC2+γmϕm2C3...+γmϕmj1Cj}xj+=0(11)
假设信号都不相关的情况下,则不存在一组非0数 { K 1 , K 2 , K 3... K j } \{K_1,K2,K3 ... Kj\} {K1,K2,K3...Kj},使得 K 1 ∗ x 1 + K 2 ∗ x 2 + K 3 ∗ x 3 = 0 K_1*x_1 +K2*x_2 +K_3*x_3 = 0 K1x1+K2x2+K3x3=0;所以在信号不相关的情况下,则该组数只能为: { 0 , 0 , 0 , . . . 0 } \{0,0,0,...0\} {0,0,0,...0}

意即:
[ γ 1 C 1 + γ 1 ϕ 1 C 2 + γ 1 ϕ 1 2 C 3 . . . + γ 1 ϕ 1 j − 1 C j γ 2 C 1 + γ 2 ϕ 2 C 2 + γ 2 ϕ 2 2 C 3 . . . + γ 2 ϕ 2 j − 1 C j ⋮ γ m C 1 + γ m ϕ m C 2 + γ m ϕ m 2 C 3 . . . + γ m ϕ m j − 1 C j ] = 0 (12) \begin{bmatrix} \gamma_1 C_1 + \gamma_1 \phi_1 C_2 + \gamma_1 \phi_1^2 C_3 ... +\gamma_1 \phi_1^{j - 1} C_j \\ \gamma_2 C_1 + \gamma_2 \phi_2 C_2 + \gamma_2 \phi_2^2 C_3 ... +\gamma_2 \phi_2^{j - 1} C_j \\ \vdots\\ \gamma_m C_1 + \gamma_m \phi_m C_2 + \gamma_m \phi_m^2 C_3 ... +\gamma_m \phi_m^{j - 1} C_j \\ \end{bmatrix} = 0 \tag{12} γ1C1+γ1ϕ1C2+γ1ϕ12C3...+γ1ϕ1j1Cjγ2C1+γ2ϕ2C2+γ2ϕ22C3...+γ2ϕ2j1CjγmC1+γmϕmC2+γmϕm2C3...+γmϕmj1Cj =0(12)
划简公式为:
[ C 1 + ϕ 1 C 2 + ϕ 1 2 C 3 . . . + ϕ 1 j − 1 C j C 1 + ϕ 2 C 2 + ϕ 2 2 C 3 . . . + ϕ 2 j − 1 C j ⋮ C 1 + ϕ m C 2 + ϕ m 2 C 3 . . . + ϕ m j − 1 C j ] = 0 (13) \begin{bmatrix} C_1 + \phi_1 C_2 + \phi_1^2 C_3 ... +\phi_1^{j - 1} C_j\\ C_1 + \phi_2 C_2 + \phi_2^2 C_3 ... +\phi_2^{j - 1} C_j \\ \vdots\\ C_1 + \phi_m C_2 + \phi_m^2 C_3 ... +\phi_m^{j - 1} C_j\\ \end{bmatrix} = 0 \tag{13} C1+ϕ1C2+ϕ12C3...+ϕ1j1CjC1+ϕ2C2+ϕ22C3...+ϕ2j1CjC1+ϕmC2+ϕm2C3...+ϕmj1Cj =0(13)
如果已经找到了关于C的系数,则根据以上式子可以解关于 ϕ \phi ϕ的值。但是有一个前提条件是接收信号的个数必须小于天线的个数

最终将问题转换为:
[ y 1 [ 1 ] y 2 [ 1 ] . . . y n [ 1 ] y 1 [ 2 ] y 2 [ 2 ] . . . y n [ 2 ] ⋮ y 1 [ m ] y 2 [ m ] . . . y n [ m ] ] [ C 1 C 2 ⋮ C n ] = [ 0 0 ⋮ 0 ] (12) \begin{bmatrix} y_1[1] & y_2[1] &...& y_n[1] \\ y_1[2] & y_2[2] &...& y_n[2] \\ \vdots\\ y_1[m] & y_2[m] &...& y_n[m] \\ \end{bmatrix} \begin{bmatrix} C_1\\ C_2 \\ \vdots\\ C_n \end{bmatrix}= \begin{bmatrix} 0\\ 0\\ \vdots\\ 0 \end{bmatrix} \tag{12} y1[1]y1[2]y1[m]y2[1]y2[2]y2[m].........yn[1]yn[2]yn[m] C1C2Cn = 000 (12)
这和一般的解方程组的方式不一样的地方是这个不是方阵,未知数小于方程个数。
是一个典型的解超定方程组系统(overdetermind system)。

超定方程组求解

TODO !!!

  • 10
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值