图像分割算法综述

      图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。

  1. 阈值法:全局阈值、自适应阈值、OTSU(直方图)
  2. 区域生长法
  3. 边缘检测
  4. 特征聚类:K-means
  5. 直方图

阈值分割

   灰度阈值分割法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。

                                         

      其中,T为阈值;对于物体的图像元素,g(i,j)=1,对于背景的图像元素,g(i,j)=0

     由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值逐个进行比较,而且像素分割可对各像素并行地进行,分割的结果直接给出图像区域。

阈值分割的优点:是计算简单、运算效率较高、速度快。

人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。

全局阈值

    全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。

自适应阈值

    在许多情况下,物体和背景的对比度在图像中的各处不是一样的,这时很难用一个统一的阈值将物体与背景分开。这时可以根据图像的局部特征分别采用不同的阈值进行分割。实际处理时,需要按照具体问题将图像分成若干子区域分别选择阈值,或者动态地根据一定的邻域范围选择每点处的阈值,进行图像分割。这时的阈值为自适应阈值。阈值的选择需要根据具体问题来确定,一般通过实验来确定。对于给定的图像,可以通过分析直方图的方法确定最佳的阈值,例如当直方图明显呈现双峰情况时,可以选择两个峰值的中点作为最佳阈值。例如OTSU法。

I=imread('bm.bmp');  %读取当前路径下的图片
subplot(1,2,1),imshow(I);
title('原始图像')


level=graythresh(I);     %确定灰度阈值
BW=im2bw(I,level);
subplot(1,2,2),imshow(BW);
title('Otsu 法阈值分割图像')

边缘分割

      图像分割的一种重要途径是通过边缘检测,即检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。这种不连续性称为边缘。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。图像中边缘处像素的灰度值不连续,这种不连续性可通过求导数来检测到。

      对于阶跃状边缘,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此常用微分算子进行边缘检测。常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子等。在实际中各种微分算子常用小区域模板来表示,微分运算是利用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。
由于边缘和噪声都是灰度不连续点,在频域均为高频分量,直接采用微分运算难以克服噪声的影响。因此用微分算子检测边缘前要对图像进行平滑滤波。LoG算子和Canny算子是具有平滑功能的二阶和一阶微分算子,边缘检测效果较好。其中loG算子是采用Laplacian算子求高斯函数的二阶导数,Canny算子是高斯函数的一阶导数,它在噪声抑制和边缘检测之间取得了较好的平衡。

缺点:基于边缘的分割方法其难点在于边缘检测时抗噪性和检测精度之间的矛盾。若提高检测精度,则噪声产生的伪边缘会导致不合理的轮廓;若提高抗噪性,则会产生轮廓漏检和位置偏差

直方图法

   基于直方图的方法是非常有效的图像分割方法,因为他们通常只需要一个通过像素。在这种方法中,直方图是从图像中的像素的计算,并在直方图的波峰和波谷是用于定位图像中的簇。颜色和强度可以作为衡量。

     这种技术的一种改进是递归应用直方图求法的集群中的形象以分成更小的簇。重复此操作,使用更小的簇直到没有更多的集群的形成。

特征聚类法

     特征空间聚类法进行图像分割是将图像空间中的像素用对应的特征空间点表示,根据它们在特征空间的聚集对特征空间进行分割,然后将它们映射回原图像空间,得到分割结果。其中,K均值、模糊C均值聚类(FCM)算法是最常用的聚类算法。K均值算法先选K个初始类均值,然后将每个像素归入均值离它最近的类并计算新的类均值。迭代执行前面的步骤直到新旧类均值之差小于某一阈值。

    模糊C均值算法是在模糊数学基础上对K均值算法的推广,是通过最优化一个模糊目标函数实现聚类,它不像K均值聚类那样认为每个点只能属于某一类,而是赋予每个点一个对各类的隶属度,用隶属度更好地描述边缘像素亦此亦彼的特点,适合处理事物内在的不确定性。利用模糊C均值(FCM)非监督模糊聚类标定的特点进行图像分割,可以减少人为的干预,且较适合图像中存在不确定性和模糊性的特点。FCM算法对初始参数极为敏感,有时需要人工干预参数的初始化以接近全局最优解,提高分割速度。另外,传统FCM算法没有考虑空间信息,对噪声和灰度不均匀敏感。

聚类方法应注意几个问题:

(1)聚类的类数如何确定。

(2)怎样确定聚类的有效性准则。

(3)聚类中心的位置和特性事先不清楚时,如何设置初始值。

(4)运算的开销。

基于区域生长的分割方法

(1)区域生长

      区域生长的基本思想是将具有相似性质的像素集合起来构成区域。具体先对每个需要分割的区域找一个种子像素作为生长的起点,然后将种子像素周围邻域中与种子像素有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子像素所在的区域中。将这些新像素当作新的种子像素继续进行上面的过程,直到再没有满足条件的像素可被包括进来。这样一个区域就长成了。  例如:分水岭算法,浸水填充。

(2)区域分裂合并

      区域生长是从某个或者某些像素点出发,最后得到整个区域,进而实现目标提取。分裂合并差不多是区域生长的逆过程:从整个图像出发,不断分裂得到各个子区域,然后再把前景区域合并,实现目标提取。分裂合并的假设是对于一幅图像,前景区域是由一些相互连通的像素组成的,因此,如果把一幅图像分裂到像素级,那么就可以判定该像素是否为前景像素。当所有像素点或者子区域完成判断以后,把前景区域或者像素合并就可得到前景目标。基于图的分割其实也是这种思想。

不足:基于区域的分割方法往往会造成图像的过度分割

基于图的图像分割

    图像(image)的图表示是指将图像(image)表达成图论中的图(graph)。具体说来就是,把图像中的每一个像素点看成一个顶点vi ∈ V(node或vertex),像素点之间的关系对(可以自己定义其具体关系,一般来说是指相邻关系)构成图的一条边ei ∈ E,这样就构建好了一个图 G = (V,E)。图每条边的权值是基于像素点之间的关系,可以是像素点之间的灰度值差。

       是由顶点集V(vertices)和集E(edges)组成,表示为G=(V, E),每个像素点代表图的一个顶点vi ∈ V ,相邻的两个像素点构成一条边(vi, vj) ∈ E,像素颜色值的差异构成边(vi, vj)的权值w((vi, vj)),初始化时每一个像素点都是一个顶点,然后逐渐合并得到一个区域,确切地说是连接这个区域中的像素点的一个MST。

最小生成树(MST):给定需要连接的顶点,选择边权之和最小的树。

基于小波变换的分割方法?

      小波变换是近年来得到广泛应用的数学工具,它在时域和频域都具有良好的局部化性质,并且小波变换具有多尺度特性,能够在不同尺度上对信号进行分析,因此在图像处理和分析等许多方面得到应用。

      基于小波变换的阈值图像分割方法的基本思想是首先由二进小波变换将图像的直方图分解为不同层次的小波系数,然后依据给定的分割准则和小波系数选择阈值门限,最后利用阈值标出图像分割的区域。整个分割过程是从粗到细,由尺度变化来控制,即起始分割由粗略的L2(R)子空间上投影的直方图来实现,如果分割不理想,则利用直方图在精细的子空间上的小波系数逐步细化图像分割。分割算法的计算会与图像尺寸大小呈线性变化。

基于数学形态学的分割方法

     数学形态学是一种非线性滤波方法,可以用于抑制噪声、特性提取、边缘检测、图像分割等图像处理问题。数学形态学首先被用来处理二值图像,后来也被用来处理灰度图像,数学形态学的特点是能将复杂的形状进行分解,并将有意义的形状分量从无用的信息中提取出来。

    它的基本思想是利用一个称为结构元素的探针来收集图像的信息,当探针在图像中不断的移动时,不仅可根据图像各个部分间的相互关系来了解图像的结构特征,而且利用数学形态学基本运算还可以构造出许多非常有效的图像处理与分析方法。其基本的形态运算是腐蚀与膨胀。腐蚀具有使目标缩小、目标内孔增大以及外部孤立噪声消除的效果;而膨胀是将图像中与目标物体接触的所有背景点合并到物体中的过程,结果是使目标增大、孔径缩小,可以增补目标中的空间,使其形成连通域。数学形态学中另一对基本运算方法是开运算和闭运算。开运算具有消除图像是细小物体,并在物体影响纤细处分离物体和平滑较大物体边界的作用;闭运算具有填充物体影像内细小空间, 接邻近物体和平滑边界的作用。

数学形态学应用于图像分割,具有定位效果好、分割精度高、抗噪声性能好的特点。同时这种方法也有着自身的局限性:由于在图像处理的前期工作中,采用数学形态学的开(闭)运算,进行图像处理后,依然存在大量与目标不符的短线和孤立点;由于预处理工作的不彻底,还需要进行一系列的基于点的开(闭)运算,因此运算速度明显下降。如何将数学形态学与其它方法综合运用以克服这些缺陷,将是数学形态学以后的工作方向。

from:https://blog.csdn.net/yangleo1987/article/details/53173753/

from:https://blog.csdn.net/u012116229/article/details/44774975

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值