DRF-API-解析器

在 Django REST framework 中,Parser(解析器)用于解析传入的 HTTP 请求的数据。

解析器的作用是将客户端发送的请求数据(如 POSTPUTPATCH 请求中的数据)转换为 Python 数据类型,以便在视图中进行处理。

解析器如何设定:

视图的有效解析器集合始终被定义为一个类的列表。当访问 request.data 时,REST framework 会检查传入请求的 Content-Type 头,并确定使用哪个解析器来解析请求内容。

注意:在开发客户端应用程序时,始终记得在发送 HTTP 请求中的数据时设置 Content-Type 头。如果不设置内容类型,大多数客户端将默认使用 'application/x-www-form-urlencoded',这可能不是想要的。

例如,如果您使用 jQuery 的 .ajax() 方法发送 JSON 编码的数据,您应该确保包含以下设置:

contentType: 'application/json'

确定使用哪种解析器取决于客户端发送数据的格式。常见的解析器及适用场景如下:

  1. JSONParser:用于解析 application/json 格式的数据。如果您的客户端主要发送 JSON 格式的数据,通常应使用此解析器。
  2. FormParser:用于解析 application/x-www-form-urlencoded 格式的数据,常见于 HTML 表单提交。
  3. MultiPartParser:用于解析 multipart/form-data 格式的数据,常用于文件上传以及包含其他表单字段的复杂表单提交。

设置解析器通常在视图类中通过 parser_classes 属性来完成。例如:

from rest_framework.parsers import JSONParser
from rest_framework.views import APIView

class MyView(APIView):
    parser_classes = [JSONParser]

或者在视图集中设置:

from rest_framework.parsers import JSONParser
from rest_framework.viewsets import ModelViewSet

class MyViewSet(ModelViewSet):
    parser_classes = [JSONParser]

可以设置全局设置默认的解析器。例如,以下设置将仅允许包含内容的请求,而不是默认的JSON或表单数据。DEFAULT_PARSER_CLASSES``JSON

REST_FRAMEWORK = {
    'DEFAULT_PARSER_CLASSES': [
        'rest_framework.parsers.JSONParser',
    ]
}

常用的解析器示例

  1. JSONParser:用于解析 application/json 格式的数据。
    示例:
from rest_framework.parsers import JSONParser
from rest_framework.views import APIView
class MyView(APIView):
parser_classes = [JSONParser]
def post(self, request):
data = request.data
# 在这里处理解析后的数据
return Response({'message': 'Data received successfully'})
  1. FormParser:用于解析 application/x-www-form-urlencoded 格式的数据,常用于 HTML 表单提交。
    示例:
from rest_framework.parsers import FormParser
from rest_framework.views import APIView
class MyFormView(APIView):
parser_classes = [FormParser]
def post(self, request):
data = request.data
# 处理表单数据
return Response({'message': 'Form data received'})
  1. MultiPartParser:用于解析 multipart/form-data 格式的数据,常用于文件上传以及包含其他表单字段的复杂表单提交。
    示例:
from rest_framework.parsers import MultiPartParser
from rest_framework.views import APIView
class MyUploadView(APIView):
parser_classes = [MultiPartParser]
def post(self, request):
file = request.data['file'] # 获取上传的文件
# 处理文件
return Response({'message': 'File uploaded'})

在视图类或视图集中,通过设置 parser_classes 属性来指定使用的解析器。

第三方的

YAML:

$ pip install djangorestframework-yaml
REST_FRAMEWORK = {
    'DEFAULT_PARSER_CLASSES': [
        'rest_framework_yaml.parsers.YAMLParser',
    ],
    'DEFAULT_RENDERER_CLASSES': [
        'rest_framework_yaml.renderers.YAMLRenderer',
    ],
}

XML

$ pip install djangorestframework-xml
REST_FRAMEWORK = {
    'DEFAULT_PARSER_CLASSES': [
        'rest_framework_xml.parsers.XMLParser',
    ],
    'DEFAULT_RENDERER_CLASSES': [
        'rest_framework_xml.renderers.XMLRenderer',
    ],
}

Msgpack

 pip install djangorestframework-msgpack

自定义解析器

以下是一个自定义解析器的示例,用于解析一种特定格式的文本数据:

from rest_framework.parsers import BaseParser

class CustomTextParser(BaseParser):
    """
    自定义的文本解析器,用于解析特定格式的文本数据
    """
    media_type = 'text/custom-format'  # 定义媒体类型

    def parse(self, stream, media_type=None, parser_context=None):
        """
        解析传入的数据流

        Args:
            stream: 输入的数据流
            media_type: 内容的媒体类型
            parser_context: 包含请求和其他上下文信息的字典

        Returns:
            解析后的数据
        """
        # 在这里实现解析逻辑
        text = stream.read()
        # 假设我们的格式是每行一个键值对,用":"分隔
        data = {}
        lines = text.split('\n')
        for line in lines:
            if ':' in line:
                key, value = line.split(':', 1)
                data[key.strip()] = value.strip()
        return data

然后在视图中使用这个自定义解析器:

from rest_framework.views import APIView

class MyView(APIView):
    parser_classes = [CustomTextParser]

    def post(self, request):
        data = request.data
        # 处理解析后的数据
        return Response(data)

在上述示例中,我们创建了一个名为 CustomTextParser 的自定义解析器,它能够解析一种每行是一个键值对(用 : 分隔)的文本格式。然后在视图中指定使用这个自定义解析器来处理请求数据。

自定义解析器在 Django REST framework 中有以下一些常见的应用场景:

  1. 处理特定格式的数据:如果您的应用需要处理客户端以某种独特格式发送的数据,例如自定义的 XML 格式、特定分隔符的文本格式、特定编码的二进制数据等,就可以创建自定义解析器来将其转换为可用的 Python 数据结构。
  2. 数据转换和预处理:在解析数据时进行额外的转换或预处理操作。例如,将接收到的数据进行单位转换、编码转换、数据清理或格式规范化。
  3. 与遗留系统集成:当与遗留系统进行交互,而这些系统使用了非标准的数据格式时,自定义解析器可以帮助将这些特殊格式的数据集成到 RESTful API 中。
  4. 多格式支持:如果您的 API 要同时支持多种不同但又非常规的数据格式,为每种格式创建相应的自定义解析器可以使处理更加清晰和可维护。
  5. 加密或压缩数据:处理客户端发送的加密或压缩的数据,在解析时进行解密或解压缩操作。
  6. 基于上下文的解析:根据请求的上下文信息(如请求的来源、用户身份、请求头中的特定字段等)来决定如何解析数据。
    总之,只要应用接收到的请求数据格式不符合框架提供的默认解析器,或者需要在解析过程中进行特殊的处理,都可以考虑创建自定义解析器。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白日与明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值