⭐【LeetCode】- 最长有效括号

题目链接:

链接: 最长有效括号.


题目描述:

给你一个只包含 ’( '和 ’) ’ 的字符串,找出最长有效(格式正确且连续)括号子串的长度。


测试样例:

示例 1:

输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"

示例 2:

输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"

示例 3:

输入:s = ""
输出:0

示例 4:

输入:s = "(())"
输出:4
解释:最长有效括号子串是 "(())"

参考题解:

时间复杂度:O(N) ;

@Override
class Solution {
public:
    int longestValidParentheses(string s) {
        int slen = s.size();
        int laststart = 0;	// 用来记录当前连续有效括号的起始位置
        int maxlen = 0;		// 用来记录最长有效括号长度
        stack<int>start;	// 用来存'('的位置
        for(int i = 0; i < slen; ++i)	//遍历一次字符串
        {
            if(s[i] == '(') start.push(i);	// 碰到'('就将其位置入栈
            else	// 以下为碰到')'的情况
            {
                if(!start.empty())	// 碰到')'且栈不为空
                {
                    start.pop();
                    if(!start.empty())
                    {
                    	// pop完还不为空则说明原本栈内不止一个'('
                    	// 那么maxlen只能用栈顶元素来计算
                    	// 例如:'(()'
                        maxlen = max(maxlen, i - start.top());
                    }
                    else 
                    {
                    	// pop完栈为空那么maxlen只能用laststart来计算
                    	// 例如:'()()'
                    	maxlen = max(maxlen, i - laststart + 1);
                	}
                }
                else	// 碰到')'且栈为空
                {
                	// 重新开始计数,记录一下接下来的起始位置
                	laststart = i + 1;
            	}
            }
        }
        return maxlen;
    }
};

执行结果:

执行结果


解题历程:

看到 括号匹配 就想到用栈来解决。一开始没想着引入 laststart 这个参数,想着用栈顶元素就可以算出 maxlen。直到 ‘()()()’ 样例出错才想到仅靠栈顶元素是无法“回忆”到第一个左括号的位置的,因此引入一个参数来记录。
总的来说,只进行了一个循环,遍历了一次输入字符串。因此,时间复杂度为O(N)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值