线性规划与网络流24——星际转移问题

题目链接点这里这点的建图有点像分层图,,按时间分层

从小到大枚举时间,就会加一些点和边,,然后跑流,,

,,我写的建图,,我觉得超级迷,,我自己都快看不懂了。。。


#include<iostream>
#include<map>
#include<stdio.h>
#include<algorithm>
#include<queue>
#include<set>
#include<string.h>
#include<string>
#include<vector>
#define MX 1111
#define INF 0x3f3f3f3f
#define mem(x,y) memset(x,y,sizeof(x))
#define FIN freopen("input.txt","r",stdin)
using namespace std;
int n,m,k;
int s,t;
int head[MX],rear;
struct Edge
{
    int nxt,to,cap;
} edge[MX*11];
void edge_init()
{
    mem(head,-1);
    rear=0;
}
void edge_add(int a,int b,int cap)
{
    //edge[rear].cost=cost;
    edge[rear].cap=cap;
    edge[rear].nxt=head[a];
    edge[rear].to=b;
    head[a]=rear++;
}
bool vis[MX];
int d[MX],cur[MX];
bool BFS(int s,int t)
{
    mem(vis,0);
    queue<int> my;
    my.push(s);
    vis[s]=1;
    d[s]=0;
    d[t]=-1;
    while(!my.empty())
    {
        int u=my.front();
        my.pop();
        for(int i=head[u]; ~i; i=edge[i].nxt)
        {
            int v=edge[i].to;
            if(vis[v]||!edge[i].cap) continue;
            d[v]=d[u]+1;
            vis[v]=1;
            my.push(v);
        }
    }
    return d[t]!=-1;
}
int DFS(int x,int t,int a)
{
    if(x==t||a==0) return a;
    int flow=0,f;
    for(int &i=cur[x]; ~i; i=edge[i].nxt)
    {
        int v=edge[i].to;
        if(d[v]==d[x]+1&&(f=DFS(v,t,min(a,edge[i].cap))))
        {
            edge[i].cap-=f;
            edge[i^1].cap+=f;
            flow+=f;
            a-=f;
            if(a==0) break;
        }
    }
    return flow;
}
int Dinic(int s,int t)
{
    int flow=0;
    while(BFS(s,t))
    {
        memcpy(cur,head,sizeof(head));
        flow+=DFS(s,t,INF);
    }
    return flow;
}
int w[33][33];
int cap[33];
int prelab[33],nowlab[33];
int check()
{

    mem(prelab,-1);
    int sum=0,cnt=0;
    for(int i=2;; i++)
    {
        mem(nowlab,-1);
        for(int j=1; j<=m; j++)
        {
            int a=w[j][(i-2)%w[j][0]+1],
                b=w[j][(i-1)%w[j][0]+1];
            // cout<<i<<" "<<a<<" "<<b<<endl;
            if(b==s||a==t)continue;
            if(a==s&&b==t)
            {
                edge_add(s,t,cap[j]);
                edge_add(t,s,0);
            }
            else  if(a==s)
            {

                if(prelab[b]!=-1)
                {
                    if(nowlab[b]==-1)
                        edge_add(prelab[b],++cnt,INF),edge_add(cnt,prelab[b],0),nowlab[b]=cnt;

                    edge_add(s,nowlab[b],cap[j]);
                    edge_add(nowlab[b],s,0);
                }
                else
                {
                    edge_add(s,++cnt,cap[j]);
                    edge_add(cnt,s,0);
                    nowlab[b]=cnt;
                }
            }
            else if(b==t)
            {
                if(prelab[a]!=-1)
                {
                    edge_add(prelab[a],t,cap[j]);
                    edge_add(t,prelab[a],0);
                }
            }
            else
            {
                if(prelab[a]!=-1)
                {
                    if(prelab[b]!=-1)
                    {
                        if(nowlab[b]==-1)
                            edge_add(prelab[b],++cnt,INF),
                                     edge_add(cnt,prelab[b],0),
                                     nowlab[b]=cnt;
                        edge_add(prelab[a],nowlab[b],cap[j]);
                        edge_add(nowlab[b],prelab[a],0);
                    }
                    else
                    {
                        if(nowlab[b]==-1)
                            nowlab[b]=++cnt;
                        edge_add(prelab[a],nowlab[b],cap[j]);
                        edge_add(nowlab[b],prelab[a],0);
                    }
                }
            }
        }

        sum+=Dinic(s,t);
        if(sum>=k) return i;
        if(i>555) return 1;
        for(int i=1; i<=n; i++) if(nowlab[i]!=-1) prelab[i]=nowlab[i];
    }
}
int main()
{
    FIN;
    while(~scanf("%d%d%d",&n,&m,&k))
    {
        s=0,t=MX-5;
        edge_init();
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d",&cap[i],&w[i][0]);
            for(int j=1; j<=w[i][0]; j++)
            {
                scanf("%d",&w[i][j]);
                if(w[i][j]==-1) w[i][j]=t;
            }
        }
        printf("%d\n",check()-1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值