线性基(【洛谷3812】)

题面

题目描述

给定n个整数(数字可能重复),求在这些数中选取任意个,使得他们的异或和最大。

输入输出格式

输入格式:

第一行一个数n,表示元素个数

接下来一行n个数

输出格式:

仅一行,表示答案。

输入输出样例

输入样例#1:

2
1 1

输出样例#1:

1

题解

线性基模板题

以下是线性基的有关内容

1.构建

对于当前要加入线性基的数 x x
不妨令x最高位的 1 1 在第p
如果线性基中已经存在 a[p] a [ p ]
那么, x=x xor a[p] x = x   x o r   a [ p ] 继续处理
否则, a[p]=x a [ p ] = x ,结束操作
如果 x x 在执行完插入操作后变成了0
证明 x x 可以用线性基中的数的一个子集的异或和来表示

2.查询

查询某个数x与线性基中任意个数的异或和的最大值
从最高位开始,依次访问每个 a[i] a [ i ]
如果 x xor a[i]>x x   x o r   a [ i ] > x
直接令 x=x xor a[i] x = x   x o r   a [ i ] ,继续操作即可

3.实现

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline ll read()
{
    RG ll x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int n;
struct xxj
{
    ll p[60];
    void insert(ll x)
    {
        for(int i=50;i>=0;--i)
        {
            if(!(x&(1ll<<i)))continue;
            if(!p[i])p[i]=x;
            x^=p[i];
        }
    }
    ll Query(ll x)
    {
        for(int i=50;i>=0;--i)
            x=max(x,x^p[i]);
        return x;
    }
}G;
int main()
{
    n=read();
    while(n--)G.insert(read());
    printf("%lld\n",G.Query(0));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值