莫比乌斯反演
小蒟蒻yyb
Studnet
展开
-
莫比乌斯反演
初学莫比乌斯反演 先膜一发高神:orz Gay神莫比乌斯反演 有两种形式。。。第一种:如果我们有函数f(x)f(x),以及g(x)g(x),并且有: g(x)=∑d|xf(x)g(x)=\sum_{d|x}f(x) 那么,我们就有: f(x)=∑d|xμ(xd)g(x)f(x)=\sum_{d|x}\mu(\frac{x}{d})g(x)具体的证明嗷。。。 参考《具体数学》第4章(貌似原创 2017-12-02 11:43:17 · 322 阅读 · 0 评论 -
【BZOJ4652】循环之美(莫比乌斯反演,杜教筛)
题解到底在求什么呢。。。 首先不管他KK进制的问题啦,真是烦死啦所以,相当于有一个分数ij\frac{i}{j} 因为值要不相等 所以有i⊥ji \perp j,也就是gcd(i,j)=1gcd(i,j)=1现在考虑KK进制 先从熟悉的1010进制入手 如果一个最简分数是纯循环小数 我们知道,他的分母里面不含2,52,5 而且,巧极了10=2∗510=2*5 于是乎,YYYY一下原创 2018-01-17 10:01:41 · 395 阅读 · 0 评论 -
【BZOJ2440】完全平方数(二分答案,莫比乌斯反演)
题面BZOJ题解很显然,二分一个答案 考虑如何求小于等于这个数的非完全平方数倍数的个数 这个明显可以直接,莫比乌斯反演一下然后这题就很简单了#include<iostream>#include<cstdio>#include<cstdlib>#include<cstring>#include<cmath>#include<algorithm>#include<set>#includ原创 2018-01-09 08:40:56 · 298 阅读 · 0 评论 -
【BZOJ3529】数表(莫比乌斯反演,树状数组)
题解首先不管AA的范围的限制 要求的东西是 ∑i=1n∑j=1mσ(gcd(i,j))\sum_{i=1}^n\sum_{j=1}^m\sigma(gcd(i,j)) 其中σ(x)\sigma(x)表示xx的约数之和约数之和是一个积性函数,可以线性筛 具体的做法请参考皮皮亮的Blog根据常见的套路 把gcdgcd给提出来 ∑d=1nσ(d)∑i=1n∑j=1m[gcd(i,j)=d]\s原创 2018-01-17 15:24:26 · 244 阅读 · 0 评论 -
【BZOJ3930】选数(莫比乌斯反演,杜教筛)
题面给定n,K,L,Rn,K,L,R 问从L~RL~R中选出nn个数,使得他们gcd=Kgcd=K的方案数题解首先就把区间缩小一下 全部缩小KK倍,不能直接除,原创 2018-01-17 16:51:56 · 303 阅读 · 0 评论 -
【BZOJ2154】Crash的数字表格(莫比乌斯反演)
题面BZOJ 简化题意: 给定n,mn,m 求∑i=1n∑j=1mlcm(i,j)\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)题解以下的一切都默认n<mn<m 我们都知道lcm(i,j)=ijgcd(i,j)lcm(i,j)=\frac{ij}{gcd(i,j)} 所以所求化简 ∑i=1n∑j=1mijgcd(i,j)\sum_{i=1}^n\sum_{j=1}^m\原创 2018-01-09 17:41:35 · 277 阅读 · 0 评论 -
【BZOJ3994】约数个数和(莫比乌斯反演)
orz ZSY 巨佬根据玄学(我也不知道为什么)的公式 d(ij)=∑x|i∑y|j[gcd(x,y)==1]d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]所以,所求等于 ∑i=1n∑j=1m∑u|i∑v|j[gcd(u,v)==1]\sum_{i=1}^n\sum_{j=1}^m\sum_{u|i}\sum_{v|j}[gcd(u,v)==1] 把枚举因数丢到原创 2018-01-10 16:53:57 · 305 阅读 · 0 评论 -
【CJOJ2512】gcd之和(莫比乌斯反演)
题面给定n,m(n,m<=107)n,m(n,m<=10^7) 求 ∑i=1n∑j=1mgcd(i,j)\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)题解首先把公因数直接提出来 ∑d=1nd∑i=1n/d∑j=1m/d[gcd(i,j)==1]\sum_{d=1}^nd\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)==1] 很明显 设原创 2018-01-10 20:17:41 · 1135 阅读 · 0 评论 -
【BZOJ2818】Gcd(莫比乌斯反演)
题面Description给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对.Input一个整数NOutput如题Sample Input4Sample Output4HINT对于样例(2,2),(2,4),(3,3),(4,2)1<=N<=10^7题解题目要求的: ∑i=1n∑j=1n[gcd(i,j)_is_prime]\sum_{i=1}^n\sum_{j=原创 2018-01-10 20:40:29 · 275 阅读 · 0 评论 -
【Luogu3768】简单的数学题(莫比乌斯反演,杜教筛)
题面洛谷 求∑i=1n∑j=1nijgcd(i,j)求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j) n=109 n题解很明显的把gcdgcd提出来 ∑d=1nd∑i=1n∑j=1nij[gcd(i,j)==d]\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)==d] 习惯性的提出来 ∑d=1nd3∑i=1原创 2018-01-16 19:11:55 · 386 阅读 · 0 评论 -
【BZOJ2820】YY的GCD(莫比乌斯反演)
题面讨厌权限题!!!提供洛谷题面题解单次询问O(n)O(n)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 ans=∑d=1n[d_is_prime]∑i=1n/d[nid][mid]ans=\sum_{d=1}^n[d\_is\_prime]\sum_{i=1}^{n/d}[\frac{n}{id}][\frac{m}{id}] 老套路了 令T=idT=id ans=∑T=原创 2018-01-15 12:35:07 · 306 阅读 · 0 评论 -
【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
题面Vjudge题解这。。 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把。。 然后把ansans写一下 ans=∑d=1nd∑i=1n/dμ(i)[nid]2ans=\sum_{d=1}^nd\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}]^2 令T=idT=id 然后把TT提出来 ans=∑T=1n[nT]2∑d|Tdμ(Td)ans=\sum原创 2018-01-14 22:27:05 · 427 阅读 · 0 评论 -
【HDU1695】GCD(莫比乌斯反演)
题面题目大意求a<=x<=b,c<=y<=da<=x<=b,c<=y<=d 且gcd(x,y)=kgcd(x,y)=k的无序数对的个数 其中,你可以假定a=c=1a=c=1 所有数都<=100000<=100000 数据组数<=3000<=3000题解莫比乌斯反演作为一道莫比乌斯反演的题目 首先我们要迈出第一步 如果有gcd(x,y)=kgcd(x,y)=k 那么,我们就有gcd(xk原创 2017-12-02 15:22:46 · 551 阅读 · 0 评论 -
【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)
题面题目描述FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。输入输出格式输入格式: The first line of the standard input contains one integer nn (1\le n\le 50\ 0001≤n≤50 0原创 2017-12-02 15:47:38 · 405 阅读 · 0 评论 -
【BZOJ2301】【HAOI2011】Problem B(莫比乌斯反演)
题面Description对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。Input第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、kOutput共n行,每行一个整数表示满足要求的数对(x,y)的个数Sample Input2 2 5 1 5 1 1 5 1 5 2Sample原创 2017-12-02 16:13:40 · 400 阅读 · 0 评论 -
【BZOJ2005】【NOI2010】能量采集(莫比乌斯反演,容斥原理)
题面Description栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列 有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n, 表示是在第x列,y的范围是1至m,表示是在第x列的第原创 2017-12-19 19:49:46 · 242 阅读 · 0 评论 -
【BZOJ4407】于神之怒加强版(莫比乌斯反演)
题面BZOJ 求: ∑i=1n∑j=1mgcd(i,j)k\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k题解根据惯用套路 把公约数提出来 ∑d=1ndk∑i=1n∑j=1m[gcd(i,j)==d]\sum_{d=1}^nd^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] 再提一次 ∑d=1ndk∑i=1n/d∑j=1m/d[gcd(i原创 2018-01-11 08:42:37 · 276 阅读 · 0 评论 -
【BZOJ2693】jzptab(莫比乌斯反演)
题面讨厌权限题,只能跑到别的OJ上交 和这题是一样的 多组数据 求∑i=1n∑j=1mlcm(i,j)\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)题解前面的部分直接看上面的那个链接 ans=∑d=1nd∑i=1n/di2S(nid)S(mid)μ(i)ans=\sum_{d=1}^nd\sum_{i=1}^{n/d}i^2S(\frac{n}{id})S(\frac{m}原创 2018-01-11 12:47:04 · 221 阅读 · 0 评论 -
【BZOJ4816】数字表格(莫比乌斯反演)
题面BZOJ 求 ∏i=1n∏j=1mf[gcd(i,j)]\prod_{i=1}^n\prod_{j=1}^mf[gcd(i,j)]题解忽然不知道这个要怎么表示。。。 就写成这样吧。。 ∏d=1n∏i=1n∏j=1mif(gcd(i,j)==d)f[gcd(i,j)]\prod_{d=1}^n\prod_{i=1}^n\prod_{j=1}^mif(gcd(i,j)==d)f[gcd(i,原创 2018-01-12 09:24:55 · 242 阅读 · 0 评论 -
【BZOJ3309】DZY Loves Math(莫比乌斯反演)
题面求 ∑i=1a∑j=1bf(gcd(a,b))\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b)) 其中,f(x)f(x)表示xx分解质因数之后,最高的幂次题解完全不会莫比乌斯反演了。 先来推式子 ∑d=1a∑i=1a/d∑j=1b/d[gcd(i,j)=1]f(d)\sum_{d=1}^a\sum_{i=1}^{a/d}\sum_{j=1}^{b/d原创 2018-04-12 14:25:58 · 511 阅读 · 0 评论