【BZOJ3144】切糕(网络流,最小割)

232 篇文章 0 订阅
69 篇文章 0 订阅

题面

BZOJ

题解

这样的类型很有趣
先不考虑相邻距离差不能超过 D D 的限制
我们考虑答案,显然就是在每个位置选一个最小的高度割就行了
化成最小割的模型?
对于每个位置挂一条长链,分别表示每个高度
S 1 1 高度相连,R高度和 T T 相连
连向第i个点的边的容量就是高度 i i 的代价

现在加入了距离不超过D的限制
举个例子,如果你一个割掉了 1 1 ,那么,另外一个就不能割1+D
也就是在 D D 之后的那条边不能割
如果割了的话,我们强制给他增加一条容量为inf的边让他不能这样割就好了
这样子我们从 D+1 D + 1 1 1 连一条容量为inf的边
这样子就不能割掉 1 1 再割D+1
否则就还需要把这条 inf i n f 的边给割掉,这样就保证了相邻的距离不超过 D D <script type="math/tex" id="MathJax-Element-788">D</script>

直接求最小割就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define inf 1000000000
#define MAX 50
inline int read()
{
    RG int x=0,t=1;RG char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=-1,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return x*t;
}
int V[MAX][MAX][MAX],P,Q,R,D;
int S,T,bh[MAX][MAX][MAX],tot;
struct Line{int v,next,w;}e[5000000];
int h[MAX*MAX*MAX],cnt=2;
inline void Add(int u,int v,int w)
{
    e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
    e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
int level[MAX*MAX*MAX];
bool bfs()
{
    queue<int> Q;Q.push(S);
    for(int i=S;i<=T;++i)level[i]=0;level[S]=1;
    while(!Q.empty())
    {
        int u=Q.front();Q.pop();
        for(int i=h[u];i;i=e[i].next)
            if(!level[e[i].v]&&e[i].w)
                level[e[i].v]=level[u]+1,Q.push(e[i].v);
    }
    return level[T];
}
int dfs(int u,int flow)
{
    if(u==T||!flow)return flow;
    int ret=0;
    for(int i=h[u];i;i=e[i].next)
    {
        int v=e[i].v;
        if(level[v]==level[u]+1)
        {
            int d=dfs(v,min(flow,e[i].w));
            ret+=d;flow-=d;
            e[i].w-=d;e[i^1].w+=d;
            if(!flow)break;
        }
    }
    if(!ret)level[u]=0;
    return ret;
}
int Dinic()
{
    int ret=0;
    while(bfs())ret+=dfs(S,inf);
    return ret;
}
int main()
{
    P=read();Q=read();R=read();D=read();
    for(int i=1;i<=R;++i)
        for(int j=1;j<=P;++j)
            for(int k=1;k<=Q;++k)
                V[j][k][i]=read(),bh[j][k][i]=++tot;
    S=0;T=P*Q*R+1;
    for(int i=1;i<=P;++i)
        for(int j=1;j<=Q;++j)
            Add(S,bh[i][j][1],V[i][j][1]);
    for(int i=2;i<=R;++i)
        for(int j=1;j<=P;++j)
            for(int k=1;k<=Q;++k)
                Add(bh[j][k][i-1],bh[j][k][i],V[j][k][i]);
    for(int i=1;i<=P;++i)
        for(int j=1;j<=Q;++j)
            Add(bh[i][j][R],T,inf);
    for(int i=1;i<=P;++i)
        for(int j=1;j<=Q;++j)
            for(int k=D+1;k<=R;++k)
            {
                if(i!=1)Add(bh[i][j][k],bh[i-1][j][k-D],inf);
                if(j!=1)Add(bh[i][j][k],bh[i][j-1][k-D],inf);
                if(i!=P)Add(bh[i][j][k],bh[i+1][j][k-D],inf);
                if(j!=Q)Add(bh[i][j][k],bh[i][j+1][k-D],inf);
            }
    printf("%d\n",Dinic());
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值