题面
题解
构建后缀自动机,求出后缀树
现在有个比较明显的
dp
d
p
设
f[i]
f
[
i
]
表示从上而下到达当前点能够满足条件的最优值
只需要检查父亲节点是否在当前串中出现过两次就行了
这个判断用
endpos
e
n
d
p
o
s
来判断
如果出现过超过两次,那么在当前点所掌控的任意一个
endpos
e
n
d
p
o
s
以及前面的区间中
必定出现了超过两次
用一个线段树合并求
endpos
e
n
d
p
o
s
集合
然后计算一下出现次数就好了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 444444
char ch[MAX];
int n,last=1,tot=1,TOT;
struct SegNode{int ls,rs;}st[MAX*25];
int rt[MAX],f[MAX],ans=1;
void Modify(int &x,int l,int r,int p)
{
if(!x)x=++TOT;if(l==r)return;
int mid=(l+r)>>1;
if(p<=mid)Modify(st[x].ls,l,mid,p);
else Modify(st[x].rs,mid+1,r,p);
}
int Merge(int x,int y)
{
if(!x||!y)return x|y;
int z=++TOT;
st[z].ls=Merge(st[x].ls,st[y].ls);
st[z].rs=Merge(st[x].rs,st[y].rs);
return z;
}
int Query(int x,int l,int r,int L,int R)
{
if(!x)return 0;if(L<=l&&r<=R)return 1;
int mid=(l+r)>>1;
if(L<=mid&&Query(st[x].ls,l,mid,L,R))return 1;
if(R>mid&&Query(st[x].rs,mid+1,r,L,R))return 1;
return 0;
}
struct Node{int ff,len,pos,son[26];}t[MAX];
void extend(int c,int pos)
{
int p=last,np=++tot;last=np;t[np].pos=pos;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];t[nq].len=t[p].len+1;
t[q].ff=t[np].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
}
int a[MAX],p[MAX],top[MAX];
int main()
{
scanf("%d",&n);scanf("%s",ch+1);
for(int i=1;i<=n;++i)extend(ch[i]-97,i),Modify(rt[last],1,n,i);
for(int i=1;i<=tot;++i)a[t[i].len]++;
for(int i=1;i<=n;++i)a[i]+=a[i-1];
for(int i=tot;i>=1;--i)p[a[t[i].len]--]=i;
for(int i=tot;i>1;--i)rt[t[p[i]].ff]=Merge(rt[t[p[i]].ff],rt[p[i]]);
for(int i=2;i<=tot;++i)
{
int u=p[i],fa=t[u].ff;
if(fa==1){f[u]=1,top[u]=u;continue;}
int x=Query(rt[top[fa]],1,n,t[u].pos-t[u].len+t[top[fa]].len,t[u].pos-1);
if(x)f[u]=f[fa]+1,top[u]=u;
else f[u]=f[fa],top[u]=top[fa];
ans=max(ans,f[u]);
}
printf("%d\n",ans);
return 0;
}