20190517工作计划

该博客记录新系统需求修改计划,目前完成30%。面临细节多需仔细核对的问题。总结指出因沿用前人代码,复用性差,修改时牵一发而动全身。
  1. 计划
    1.1 修改新的系统的需求
  1. 完成情况
    2.1 完成了30%
  1. 面临的问题及其解决方法
    3.1 比较多,细节太多,需要仔细核对
  1. 总结
    因为继续引用前人的,故很多东西前面的人可能只是为了效率,而牺牲了很多,比如复用性这些做的不太好,同样的代码写了很多,所以改都是牵一发而动全身。
  1. 技术点
内容概要:本文研究了一种基于离散韦格纳分布(DWVD)结合卷积神经网络(CNN)与长短期记忆网络(LSTM)的故障诊断方法,利用DWVD对振动信号进行时频特征提取,并将其转化为二维图像输入到CNN-LSTM混合深度学习模型中,实现对机械系统尤其是轴承故障的高精度自动识别。文中详细阐述了信号处理流程、模型构建方式及训练策略,并采用CWRU轴承数据集进行实验验证,结果表明该方法在复杂工况下具有优异的诊断准确率和鲁棒性;同时提供了完整的Matlab代码实现,便于复现与进一步研究。; 适合人群:具备一定信号处理与机器学习基础,从事机械故障诊断、工业自动化或智能制造方向的研究生、科研人员及工程技术人员;熟悉Matlab编程者更佳。; 使用场景及目标:①应用于旋转机械设备的状态监测与早期故障预警;②为深度学习在工业故障诊断中的落地提供可参考的技术路线与实现方案;③支持学术研究中的模型对比、算法改进与创新验证。; 阅读建议:建议结合提供的Matlab代码逐模块理解实现细节,重点关注DWVD时频图生成、数据预处理、CNN-LSTM网络结构设计与参数调优过程,同时可尝试在其他公开数据集上迁移验证以加深理解。基于离散韦格纳分布(DWVD)结合卷积神经网络(CNN)与长短期记忆网络(LSTM)的故障诊断研究(Matlab代码实现)
内容概要:本文围绕“基于深度强化学习的多无人机辅助边缘计算网络路径规划”展开,提出了一种结合深度强化学习的智能路径规划方法,用于优化多无人机在边缘计算网络中的协同作业。通过将无人机作为移动计算节点,利用深度强化学习算法动态调整飞行路径,以最大化任务执行效率、降低延迟并提升资源利用率。文中详细阐述了系统模型构建、奖励机制设计、动作与状态空间定义,并基于Matlab实现了算法仿真,验证了该方法在复杂环境下的有效性与适应性。同时,文档列举了多个相关研究方向和技术实现案例,涵盖无人机协同路径规划、状态估计、任务分配等多个方面,突出了深度强化学习在智能无人系统中的应用潜力。; 适合人群:具备一定编程基础和科研能力,从事无人机、边缘计算、智能优化或强化学习相关领域的研究生及科研人员;熟悉Matlab仿真工具的技术开发者。; 使用场景及目标:①研究多无人机在边缘计算网络中的任务卸载与路径协同优化;②探索深度强化学习在动态、复杂环境下路径决策的应用;③为相关课题提供Matlab代码实现参考与算法验证平台; 阅读建议:建议结合文中提供的网盘资源下载完整代码与模型,边实践边理解算法细节,重点关注状态设计、奖励函数构建与训练收敛过程,同时可横向对比其他路径规划方法以深化理解。【无人机路径规划】基于深度强化学习的多无人机辅助边缘计算网络路径规划(Matlab代码实现)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值