leetcode 5490. 吃掉 N 个橘子的最少天数 记忆化搜索,动态规划

5490. 吃掉 N 个橘子的最少天数

厨房里总共有 n 个橘子,你决定每一天选择如下方式之一吃这些橘子:

  • 吃掉一个橘子。
  • 如果剩余橘子数 n 能被 2 整除,那么你可以吃掉 n/2 个橘子。
  • 如果剩余橘子数 n 能被 3 整除,那么你可以吃掉 2*(n/3) 个橘子。

每天你只能从以上 3 种方案中选择一种方案。

请你返回吃掉所有 n 个橘子的最少天数。

示例 1:

输入:n = 10
输出:4
解释:你总共有 10 个橘子。
第 1 天:吃 1 个橘子,剩余橘子数 10 - 1 = 9。
第 2 天:吃 6 个橘子,剩余橘子数 9 - 2*(9/3) = 9 - 6 = 3。(9 可以被 3 整除)
第 3 天:吃 2 个橘子,剩余橘子数 3 - 2*(3/3) = 3 - 2 = 1。
第 4 天:吃掉最后 1 个橘子,剩余橘子数 1 - 1 = 0。
你需要至少 4 天吃掉 10 个橘子。

示例 2:

输入:n = 6
输出:3
解释:你总共有 6 个橘子。
第 1 天:吃 3 个橘子,剩余橘子数 6 - 6/2 = 6 - 3 = 3。(6 可以被 2 整除)
第 2 天:吃 2 个橘子,剩余橘子数 3 - 2*(3/3) = 3 - 2 = 1。(3 可以被 3 整除)
第 3 天:吃掉剩余 1 个橘子,剩余橘子数 1 - 1 = 0。
你至少需要 3 天吃掉 6 个橘子。

示例 3:

输入:n = 1
输出:1

示例 4:

输入:n = 56
输出:6

提示:

  • 1 <= n <= 2*10^9

周赛时没写出来,后面看题解写的

首先

  • 定义状态 : dp[n]表示吃完n个橘子的最少天数

  • 转移方程 :

    dp[n]=min(dp[n/2]+n%2+1, dp[n/3]+n%3+1)

  • 理解如下

    • 想办法把n变成2的倍数或者3的倍数
    • 对于n执行n%2吃一个操作就会变成2的倍数
    • 执行n%3吃一个操作就会变成3的倍数
  • 边界条件 : dp[0]=0

  • 于是可以写出记忆化搜索

unordered_map<int,int> mp;
class Solution {
public:

	Solution() {
		mp[0] = 0;
		mp[1] = 1;
	}

    int minDays(int n) {
        if(n == 1) return 1;
        else if(n == 0) return 0;
        if(mp.count(n)) return mp[n];
        return (mp[n] = min({ minDays((n/2)) + n%2 + 1, 
                              minDays(n/3) + n%3 + 1 }));
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值