5490. 吃掉 N 个橘子的最少天数
厨房里总共有 n
个橘子,你决定每一天选择如下方式之一吃这些橘子:
- 吃掉一个橘子。
- 如果剩余橘子数
n
能被 2 整除,那么你可以吃掉n/2
个橘子。 - 如果剩余橘子数
n
能被 3 整除,那么你可以吃掉2*(n/3)
个橘子。
每天你只能从以上 3 种方案中选择一种方案。
请你返回吃掉所有 n
个橘子的最少天数。
示例 1:
输入:n = 10
输出:4
解释:你总共有 10 个橘子。
第 1 天:吃 1 个橘子,剩余橘子数 10 - 1 = 9。
第 2 天:吃 6 个橘子,剩余橘子数 9 - 2*(9/3) = 9 - 6 = 3。(9 可以被 3 整除)
第 3 天:吃 2 个橘子,剩余橘子数 3 - 2*(3/3) = 3 - 2 = 1。
第 4 天:吃掉最后 1 个橘子,剩余橘子数 1 - 1 = 0。
你需要至少 4 天吃掉 10 个橘子。
示例 2:
输入:n = 6
输出:3
解释:你总共有 6 个橘子。
第 1 天:吃 3 个橘子,剩余橘子数 6 - 6/2 = 6 - 3 = 3。(6 可以被 2 整除)
第 2 天:吃 2 个橘子,剩余橘子数 3 - 2*(3/3) = 3 - 2 = 1。(3 可以被 3 整除)
第 3 天:吃掉剩余 1 个橘子,剩余橘子数 1 - 1 = 0。
你至少需要 3 天吃掉 6 个橘子。
示例 3:
输入:n = 1
输出:1
示例 4:
输入:n = 56
输出:6
提示:
1 <= n <= 2*10^9
周赛时没写出来,后面看题解写的
首先
-
定义状态 :
dp[n]表示吃完n个橘子的最少天数
-
转移方程 :
dp[n]=min(dp[n/2]+n%2+1, dp[n/3]+n%3+1)
-
理解如下
- 想办法把
n
变成2的倍数
或者3的倍数
- 对于
n
执行n%2
次吃一个
操作就会变成2的倍数 - 执行
n%3
次吃一个
操作就会变成3的倍数
- 想办法把
-
边界条件 :
dp[0]=0
-
于是可以写出
记忆化搜索
unordered_map<int,int> mp;
class Solution {
public:
Solution() {
mp[0] = 0;
mp[1] = 1;
}
int minDays(int n) {
if(n == 1) return 1;
else if(n == 0) return 0;
if(mp.count(n)) return mp[n];
return (mp[n] = min({ minDays((n/2)) + n%2 + 1,
minDays(n/3) + n%3 + 1 }));
}
};