链接:https://ac.nowcoder.com/acm/contest/8563/B
来源:牛客网
题目描述
众所周知,题目名称与题面没有任何关系。
你发现了一道 div2 的 A 题,下面是这道题的题面:
给定一张 n{n}n 个点,n−1{n-1}n−1 条边的无向联通图和一个常数 k{k}k,每个点拥有点权 wiw_iwi,每条边拥有边权 valival_ivali,现在他决定保留一些边,这样将剩余部分连通块,牛牛的目标是使得每个剩余的连通块的点权和都是 k{k}k 的倍数,同时最小化被保留的边的权值和。
输入描述:
第一行两个正整数 n,k
接下来一行 n 个正整数,第 i 个正整数表示节点 i 的权值是 wiw_iwi
接下来 n-1 行,每行 3 个正整数,表示一条连接 u,v 边权为 valival_ivali 的边。
输出描述:
输出一行一个正整数最小的权值和。
示例1
输入
复制
5 2
1 0 1 1 1
1 2 5
1 4 3
2 3 2
2 5 1
输出
复制
6
说明
选择 (1,4),(2,3),(2,5)
示例2
输入
复制
10 3
1 3 4 2 1 6 2 3 5 6
1 2 2
1 4 1
2 3 3
2 6 3
2 10 2
5 6 4
5 7 4
6 8 3
6 9 1
输出
复制
12
说明
选择 (1,4),(2,3),(2,6),(5,7),(6,9)
备注:
n,k≤106,wi,vali≤109n,k\le 106,w_i,val_i\le109n,k≤106,wi,vali≤109
∑i=1nwi mod k=0\sum_{i=1}^nw_i\bmod k=0∑i=1nwimodk=0
题意:给定一颗树
,有点权,有边权,给定随机值K
,你要删除一些边,
要求:
- 删除后剩余联通块点权和为
K
的倍数, - 且
最小化所有联通快的边权和
题解:对于任意一个节点U
,如果子树V
的点权和为K
的倍数,就可以删除边(U,V)
反之则保留边(U,V)
。
c++代码
int n, m, Q, K, w[MAXN];
struct Edge {
int v, w;
} ;
vector<Edge> G[MAXN];
/**
* 最后状态一定是多个联通快,每个块都是K的倍数
* 对于任意一个点u, 如果u的子树v不是k的倍数,就留下边(u,v)
* 反之删除
*/
int ans;
int dfs(int u, int fa) {
int sum = w[u];
for(auto& ed : G[u]) {
int v = ed.v, td = ed.w;
if(v == fa) continue ;
int tmp = dfs(v, u);
if((tmp % K) != 0) {
sum += tmp;
ans += td;
}
}
return sum;
}
完整代码
#define debug
#ifdef debug
#include <time.h>
#include "win_majiao.h"
#endif
#include <iostream>
#include <algorithm>
#include <vector>
#include <string.h>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <math.h>
#define MAXN ((int)1e6+7)
#define ll long long
#define int long long
#define INF (0x7f7f7f7f)
#define QAQ (0)
using namespace std;
typedef vector<vector<int> > VVI;
#define show(x...) \
do { \
cout << "[" << #x << " -> "; \
err(x); \
} while (0)
void err() { cout << "]" << endl; }
template<typename T, typename... A>
void err(T a, A... x) { cout << a << ' '; err(x...); }
namespace FastIO{
char print_f[105];
void read() {}
void print() { putchar('\n'); }
template <typename T, typename... T2>
inline void read(T &x, T2 &... oth) {
x = 0;
char ch = getchar();
ll f = 1;
while (!isdigit(ch)) {
if (ch == '-') f *= -1;
ch = getchar();
}
while (isdigit(ch)) {
x = x * 10 + ch - 48;
ch = getchar();
}
x *= f;
read(oth...);
}
template <typename T, typename... T2>
inline void print(T x, T2... oth) {
ll p3=-1;
if(x<0) putchar('-'), x=-x;
do{
print_f[++p3] = x%10 + 48;
} while(x/=10);
while(p3>=0) putchar(print_f[p3--]);
putchar(' ');
print(oth...);
}
} // namespace FastIO
using FastIO::print;
using FastIO::read;
int n, m, Q, K, w[MAXN];
struct Edge {
int v, w;
} ;
vector<Edge> G[MAXN];
/**
* 最后状态一定是多个联通快,每个块都是K的倍数
* 对于任意一个点u, 如果u的子树v不是k的倍数,就留下边(u,v)
* 反之删除
*/
int ans;
int dfs(int u, int fa) {
int sum = w[u];
for(auto& ed : G[u]) {
int v = ed.v, td = ed.w;
if(v == fa) continue ;
int tmp = dfs(v, u);
if((tmp % K) != 0) {
sum += tmp;
ans += td;
}
}
return sum;
}
signed main() {
#ifdef debug
freopen("test.txt", "r", stdin);
clock_t stime = clock();
#endif
read(n, K);
for(int i=1; i<=n; i++) read(w[i]);
int u, v, val;
for(int i=1; i<n; i++) {
read(u, v, val);
G[u].push_back({v, val}),
G[v].push_back({u, val});
}
dfs(1, 1);
printf("%lld\n", ans);
#ifdef debug
clock_t etime = clock();
printf("rum time: %lf 秒\n",(double) (etime-stime)/CLOCKS_PER_SEC);
#endif
return 0;
}