动态规划初步_数字三角形(递归,递推,数字化搜索)

题目:给出了一个数字三角形,请编写一个程序,计算从顶至底的某处的一条路径,使该路径所经过的数字的总和最大。

(1)每一步可沿左斜线向下或右斜线向下
(2)1 < 三角形行数 < 100
(3)三角形数字为0,1,…99

输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出:
34

递归计算

思路:不断的进行递归运算,找出左右子树最大值,再带入。
#include <stdio.h>
#include<algorithm>
using namespace std;

#define MAX 101
int d[MAX][MAX],a[MAX][MAX];
int n;
int maxSum(int i,int j){
    if(i==n) return a[i][j];
    else
    return max(maxSum(i+1,j),maxSum(i+1,j+1))+a[i][j];
}
int main() {
    int i,j;
    scanf("%d",&n);
    for(i=1;i<=n;i++){
        for(j=1;j<=i;j++){
            scanf("%d",&a[i][j]);
        }
    }
    printf("%d\n",maxSum(1,1));
    return 0;
}

递推运算

思路:时间复杂度0(n^2),i是逆序枚举的,因此再计算d[i+1][j]前,它所需要的d[i+1][j]和d[i+1][j+1]一定已经算出来了。
#include <stdio.h>
#include<algorithm>
using namespace std;

#define MAX 101
int d[MAX][MAX],a[MAX][MAX];
int n;
int main() {
    int i,j;
    scanf("%d",&n);
    for(i=1;i<=n;i++){
        for(j=1;j<=i;j++){
            scanf("%d",&a[i][j]);
        }
    }
    for(j=1;j<=n;j++) d[n][j]=a[n][j];
    for(i=n-1;i>=1;i--){
        for(j=1;j<=i;j++){
            d[i][j]=a[i][j]+max(d[i+1][j],d[i+1][j+1]);
        }
    }
    printf("%d\n",d[1][1]);
    return 0;
}

记忆化搜索

思路:保证每个节点只访问一次,时间复杂度为O(n^2).
#include <stdio.h>
#include<algorithm>
using namespace std;

#define MAX 101
int d[MAX][MAX],a[MAX][MAX];
int n;
int maxSum(int i,int j){
    if(d[i][j]>0) return d[i][j];
    if(i==n){
        d[i][j]=a[i][j];
    }
    else{
        d[i][j]=a[i][j]+max(maxSum(i+1,j),maxSum(i+1,j+1));
    }
    return d[i][j];
}
int main() {
    int i,j;
    scanf("%d",&n);
    for(i=1;i<=n;i++){
        for(j=1;j<=i;j++){
            scanf("%d",&a[i][j]);
        }
    }
    memset(d,-1,sizeof(d));
    printf("%d\n",maxSum(1,1));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值