题目:给出了一个数字三角形,请编写一个程序,计算从顶至底的某处的一条路径,使该路径所经过的数字的总和最大。
(1)每一步可沿左斜线向下或右斜线向下
(2)1 < 三角形行数 < 100
(3)三角形数字为0,1,…99
输入:
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出:
34
递归计算
思路:不断的进行递归运算,找出左右子树最大值,再带入。
#include <stdio.h>
#include<algorithm>
using namespace std;
#define MAX 101
int d[MAX][MAX],a[MAX][MAX];
int n;
int maxSum(int i,int j){
if(i==n) return a[i][j];
else
return max(maxSum(i+1,j),maxSum(i+1,j+1))+a[i][j];
}
int main() {
int i,j;
scanf("%d",&n);
for(i=1;i<=n;i++){
for(j=1;j<=i;j++){
scanf("%d",&a[i][j]);
}
}
printf("%d\n",maxSum(1,1));
return 0;
}
递推运算
思路:时间复杂度0(n^2),i是逆序枚举的,因此再计算d[i+1][j]前,它所需要的d[i+1][j]和d[i+1][j+1]一定已经算出来了。
#include <stdio.h>
#include<algorithm>
using namespace std;
#define MAX 101
int d[MAX][MAX],a[MAX][MAX];
int n;
int main() {
int i,j;
scanf("%d",&n);
for(i=1;i<=n;i++){
for(j=1;j<=i;j++){
scanf("%d",&a[i][j]);
}
}
for(j=1;j<=n;j++) d[n][j]=a[n][j];
for(i=n-1;i>=1;i--){
for(j=1;j<=i;j++){
d[i][j]=a[i][j]+max(d[i+1][j],d[i+1][j+1]);
}
}
printf("%d\n",d[1][1]);
return 0;
}
记忆化搜索
思路:保证每个节点只访问一次,时间复杂度为O(n^2).
#include <stdio.h>
#include<algorithm>
using namespace std;
#define MAX 101
int d[MAX][MAX],a[MAX][MAX];
int n;
int maxSum(int i,int j){
if(d[i][j]>0) return d[i][j];
if(i==n){
d[i][j]=a[i][j];
}
else{
d[i][j]=a[i][j]+max(maxSum(i+1,j),maxSum(i+1,j+1));
}
return d[i][j];
}
int main() {
int i,j;
scanf("%d",&n);
for(i=1;i<=n;i++){
for(j=1;j<=i;j++){
scanf("%d",&a[i][j]);
}
}
memset(d,-1,sizeof(d));
printf("%d\n",maxSum(1,1));
return 0;
}