FLeiss Kappa系数和Kappa系数的Python实现

本文介绍了Fleiss Kappa和Kappa系数在数据一致性评估中的应用,详细阐述了Fleiss Kappa的计算过程,并提供了Python代码实现。通过实例解释了如何计算Pj和Pi,帮助理解Fleiss Kappa的理论和实践。
摘要由CSDN通过智能技术生成

        Kappa系数和Fleiss Kappa系数是检验实验标注结果数据一致性比较重要的两个参数,其中Kappa系数一般用于两份标注结果之间的比较,Fleiss Kappa则可以用于多份标注结果的一致性检测,我在百度上面基本上没有找到关于Fleiss Kappa系数的介绍,于是自己参照维基百科写了一个模板出来,参考的网址在这里:维基百科-Kappa系数

       这里简单介绍一下Fleiss Kappa系数的计算过程,假设有以下数据:


  以上是14个人对于10个任务进行的5级标注的结果(N = 10,n = 14, k = 5),以上计算Fleiss Kappa系数的过程如下:

      ①对于Pj的计算,为每一列结果相乘除以任务总数,这里任务总数为14*10=140,对应于Kappa系数中每个分类的随机一致概率,然后由于Fleiss Kappa没有一个参照的标注值,因此这里计算Pe理论一致性的时候,将每个Pj

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值