目录

前言
本项目基于从网络获取的多种银行卡数据集,采用OpenCV库的函数进行图像处理,并通过神经网络进行模型训练。最终实现对常规银行卡号的智能识别和输出。
首先,通过网络获取了多样化的银行卡数据集,其中包含各种类型和设计的银行卡图像。这些图像数据将作为训练集和测试集,用于训练智能识别模型。
其次,利用OpenCV库的功能,项目对银行卡图像进行处理。包括图像增强、边缘检测、文本定位等技术,以优化图像并提高卡号的提取准确性。
接下来,通过神经网络进行模型训练。神经网络采用深度学习框架TensorFlow,通过学习大量银行卡图像,使模型能够理解和准确识别不同银行卡号的模式和特征。
最终,训练完成的神经网络模型能够智能地识别并输出常规银行卡号。这使得在图像中提取卡号的过程更为自动化和高效。
总体而言,本项目集成了数据采集、图像处理和深度学习技术,为银行卡号的智能识别提供了一种先进的解决方案。这对于自动化银行卡信息提取的场景,如金融服务或身份验证系统,具有潜在的实际应用价值。
总体设计
本部分包括系统整体结构图和系统流程图。
系统整体结构图
系统整体结构如图所示。

系统流程图
系统流程如图所示。

运行环境
本部分包括Python环境、TensorFlow环境和OpenCV环境。
详见博客。
模块实现
本项目包括4个模块:训练集图片处理、测试图片处理、模型训练及保存、模型测试。下面分别介绍各模块的功能及相关代码。
1. 训练集图片处理
数据集下载网址为http://www.cnsoftbei.com/plus/view.php?aid=348。训练集为1000张人工处理银行卡号截图中选取的120张大小不一、由4个银行卡字符单位组成的图片。这些数据集已打包存放在名为images的文件夹中,如图所示。

1)数据加载
相关代码如下:
def img_handle():
for root, dirs, files in os.walk('./images'):
for file in files:
img_path = root+'/'+file
img = cv2.imread(img_path, 0)
get_img(img, file)
return data, label
2)图像处理
将图片以灰度图像读入,对其进行高斯模糊、二值化处理。绘制垂直投影直方图,从左到右逐列扫描,本列有多少黑色像素点,对应直方图列就有多高。将直方图按列从左到右扫描,凡遇到直方图高度"由无到有"或者"由有到无"的列做一个标记,根据这些标记对字符分割,单个字符归一化为16×16。分割字符之后,由于数据量较少,通过对训练集做平移、添加噪声处理,进行增强。相关代码如下:
def get_img(img, file):
blur = cv2.GaussianBlur(img, (3, 3), 0) #高斯模糊
ret, img = cv2.threshold(blur, 60, 255, cv2.THRESH_BINARY) #二值化
height, width = img.shape
v = [0] * width
z = [0] * height
a = 0
#垂直投影:统计并存储每一列的黑点数
for x in range(0, width):
for y in range(0, height):
if img[y, x] == 255:
continue
else:
a = a + 1
v[x] = a
a = 0
#创建空白图片,绘制垂直投影图
l = len(v)
emptyImage = np.full((height, width), 255, dtype=np.uint8)
for x in range(0, width):
for y in range(0, v[x]):
emptyImage[y, x] = 0
#分割字符
Position = []
Wstart = 0
Wend = 0
W_Start = 0
W_End = 0
v[0], v[len(v) - 1] = 0, 0
for j in range(len(v)):
if v[j] > 0 and Wstart == 0:
W_Start = j
Wstart = 1
Wend = 0
if v[j]

本文介绍了一个基于OpenCV和TensorFlow的银行卡智能识别项目,通过网络获取多样化数据集,对图片进行预处理、特征提取,使用神经网络进行模型训练,实现对银行卡号的自动识别。详细介绍了数据处理、模型训练过程和相关代码示例。
最低0.47元/天 解锁文章
986

被折叠的 条评论
为什么被折叠?



