
机器学习
文章平均质量分 96
小胡说人工智能
工作了10余年,刚步入中年危机。寻求用AI突破自己,也希望能用微薄之力,帮助到喜欢人工智能的伙伴们。
展开
-
基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(三)
本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。原创 2024-01-02 11:30:00 · 1605 阅读 · 3 评论 -
基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(二)
本项目采用先进的卷积神经网络(CNN)模型,结合数据增强技术和残差网络,旨在实现对不同猫种的准确识别。通过CNN模型,项目强大而高效地捕捉图像特征,为猫的品种辨识提供出色学习能力。通过丰富的数据集训练,项目致力于建立一个全面泛化的模型,能够包括各式各样的猫的图像。数据增强技术和残差网络的引入进一步提高了模型的性能和鲁棒性。原创 2023-12-14 19:00:00 · 2961 阅读 · 0 评论 -
基于VGG-16+Android+Python的智能车辆驾驶行为分析—深度学习算法应用(含全部工程源码)+数据集+模型(三)
本项目采用VGG-16网络模型,使用Kaggle开源数据集,旨在提取图片中的用户特征,最终在移动端实现对不良驾驶行为的识别功能。总的来说,项目结合了深度学习、图像处理和移动端技术,致力于实现对不良驾驶行为的智能化识别,为提升驾驶安全提供了一种创新的解决方案。原创 2023-12-13 11:30:00 · 1521 阅读 · 0 评论 -
基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(四)
本项目以科大讯飞提供的数据集为基础,通过特征筛选和提取的过程,选用WaveNet模型进行训练。旨在通过语音的梅尔频率倒谱系数(MFCC)特征,建立方言和相应类别之间的映射关系,解决方言分类问题。原创 2023-12-10 11:30:00 · 2180 阅读 · 0 评论 -
基于Python+WaveNet+MFCC+Tensorflow智能方言分类—深度学习算法应用(含全部工程源码)(三)
本项目以科大讯飞提供的数据集为基础,通过特征筛选和提取的过程,选用WaveNet模型进行训练。旨在通过语音的梅尔频率倒谱系数(MFCC)特征,建立方言和相应类别之间的映射关系,解决方言分类问题。原创 2023-12-09 19:30:00 · 2865 阅读 · 0 评论 -
基于LDA主题+协同过滤+矩阵分解算法的智能电影推荐系统——机器学习算法应用(含python、JavaScript工程源码)+MovieLens数据集(四)
本项目基于Movielens数据集,采用协同过滤、矩阵分解以及建立LDA主题模型等机器学习算法,旨在设计和训练一个合适的智能电影推荐模型。最终的目标是根据电影的相似性以及用户的历史行为,生成一个个性化的电影推荐列表,从而实现网站为用户提供精准电影推荐的功能。原创 2023-11-05 20:00:00 · 549 阅读 · 0 评论 -
基于LDA主题+协同过滤+矩阵分解算法的智能电影推荐系统——机器学习算法应用(含python、JavaScript工程源码)+MovieLens数据集(三)
本项目基于Movielens数据集,采用协同过滤、矩阵分解以及建立LDA主题模型等机器学习算法,旨在设计和训练一个合适的智能电影推荐模型。最终的目标是根据电影的相似性以及用户的历史行为,生成一个个性化的电影推荐列表,从而实现网站为用户提供精准电影推荐的功能。原创 2023-11-04 10:00:00 · 683 阅读 · 0 评论 -
基于LDA主题+协同过滤+矩阵分解算法的智能电影推荐系统——机器学习算法应用(含python、JavaScript工程源码)+MovieLens数据集(二)
本项目基于Movielens数据集,采用协同过滤、矩阵分解以及建立LDA主题模型等机器学习算法,旨在设计和训练一个合适的智能电影推荐模型。最终的目标是根据电影的相似性以及用户的历史行为,生成一个个性化的电影推荐列表,从而实现网站为用户提供精准电影推荐的功能。原创 2023-11-03 20:00:00 · 767 阅读 · 0 评论 -
基于LDA主题+协同过滤+矩阵分解算法的智能电影推荐系统——机器学习算法应用(含python、JavaScript工程源码)+MovieLens数据集(一)
本项目基于Movielens数据集,采用协同过滤、矩阵分解以及建立LDA主题模型等机器学习算法,旨在设计和训练一个合适的智能电影推荐模型。最终的目标是根据电影的相似性以及用户的历史行为,生成一个个性化的电影推荐列表,从而实现网站为用户提供精准电影推荐的功能。原创 2023-11-03 14:15:24 · 560 阅读 · 0 评论 -
基于随机森林+RNN+Tensorflow-Magenta的根据图片情感智能生成音乐系统——深度学习算法应用(含python、ipynb工程源码)+所有数据集(四)
本项目基于Google的Magenta平台,它采用随机森林分类器来识别图片的情感色彩,接着项目使用递归神经网络(RNN)来生成与图片情感相匹配的音乐,最后通过图形用户界面(GUI)实现可视化结果展示。原创 2023-10-24 22:30:00 · 346 阅读 · 0 评论 -
基于随机森林+RNN+Tensorflow-Magenta的根据图片情感智能生成音乐系统——深度学习算法应用(含python、ipynb工程源码)+所有数据集(二)
本项目基于Google的Magenta平台,它采用随机森林分类器来识别图片的情感色彩,接着项目使用递归神经网络(RNN)来生成与图片情感相匹配的音乐,最后通过图形用户界面(GUI)实现可视化结果展示。原创 2023-10-24 21:30:00 · 308 阅读 · 0 评论 -
基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(四)
本项目使用了从NBA官方网站获得的数据,并运用了支持向量机(SVM)模型来进行NBA常规赛和季后赛结果的预测。此外,项目还引入了相关系数法、随机森林分类法和Lasso方法,以评估不同特征的重要性。最后,使用Python库中的webdriver功能实现了自动发帖,并提供了科学解释来解释比赛预测结果。原创 2023-10-18 14:16:20 · 1029 阅读 · 0 评论 -
基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(三)
本项目使用了从NBA官方网站获得的数据,并运用了支持向量机(SVM)模型来进行NBA常规赛和季后赛结果的预测。此外,项目还引入了相关系数法、随机森林分类法和Lasso方法,以评估不同特征的重要性。最后,使用Python库中的webdriver功能实现了自动发帖,并提供了科学解释来解释比赛预测结果。原创 2023-10-18 14:15:26 · 2414 阅读 · 0 评论 -
基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(二)
本项目使用了从NBA官方网站获得的数据,并运用了支持向量机(SVM)模型来进行NBA常规赛和季后赛结果的预测。此外,项目还引入了相关系数法、随机森林分类法和Lasso方法,以评估不同特征的重要性。最后,使用Python库中的webdriver功能实现了自动发帖,并提供了科学解释来解释比赛预测结果。原创 2023-10-18 14:14:20 · 737 阅读 · 0 评论 -
基于SVM+Webdriver的智能NBA常规赛与季后赛结果预测系统——机器学习算法应用(含python、ipynb工程源码)+所有数据集(一)
本项目使用了从NBA官方网站获得的数据,并运用了支持向量机(SVM)模型来进行NBA常规赛和季后赛结果的预测。此外,项目还引入了相关系数法、随机森林分类法和Lasso方法,以评估不同特征的重要性。最后,使用Python库中的webdriver功能实现了自动发帖,并提供了科学解释来解释比赛预测结果。原创 2023-10-18 14:11:57 · 609 阅读 · 0 评论 -
基于SVM+TensorFlow+Django的酒店评论打分智能推荐系统——机器学习算法应用(含python工程源码)+数据集+模型(三)
本项目是以向量机(SVM) 作为技术支持,使用酒店评论集作为数据集,训练出针对酒店评论情感的分析模型,使用word2vec产生词向量,实现服务器端提供数据、客户端查询数据的打分推荐系统。本系统可以帮助用户更好地了解酒店的口碑和评价,从而做出更明智的决策。原创 2023-10-08 19:30:00 · 641 阅读 · 3 评论 -
基于SVM+TensorFlow+Django的酒店评论打分智能推荐系统——机器学习算法应用(含python工程源码)+数据集+模型(二)
本项目是以向量机(SVM) 作为技术支持,使用酒店评论集作为数据集,训练出针对酒店评论情感的分析模型,使用word2vec产生词向量,实现服务器端提供数据、客户端查询数据的打分推荐系统。本系统可以帮助用户更好地了解酒店的口碑和评价,从而做出更明智的决策。原创 2023-10-08 11:30:00 · 483 阅读 · 0 评论 -
基于SVM+TensorFlow+Django的酒店评论打分智能推荐系统——机器学习算法应用(含python工程源码)+数据集+模型(一)
本项目是以向量机(SVM) 作为技术支持,使用酒店评论集作为数据集,训练出针对酒店评论情感的分析模型,使用word2vec产生词向量,实现服务器端提供数据、客户端查询数据的打分推荐系统。本系统可以帮助用户更好地了解酒店的口碑和评价,从而做出更明智的决策。原创 2023-10-07 20:45:00 · 3074 阅读 · 1 评论 -
基于矩阵分解算法的智能Steam游戏AI推荐系统——深度学习算法应用(含python、ipynb工程源码)+数据集(三)
本项目采用了矩阵分解算法,用于对玩家已游玩的数据进行深入分析。它的目标是从众多游戏中筛选出最适合该玩家的游戏,以实现一种相对精准的游戏推荐系统。本项目的目标是通过矩阵分解和潜在因子模型,提供一种更为精准的游戏推荐系统。这种个性化推荐可以提高玩家的游戏体验,同时也有助于游戏平台提供更好的游戏推广和增加用户黏性。原创 2023-09-21 22:57:37 · 775 阅读 · 0 评论 -
基于TensorFlow+CNN+协同过滤算法的智能电影推荐系统——深度学习算法应用(含微信小程序、ipynb工程源码)+MovieLens数据集(五)
本项目专注于MovieLens数据集,并采用TensorFlow中的2D文本卷积网络模型。它结合了协同过滤算法来计算电影之间的余弦相似度,并通过用户的交互方式,以单击电影的方式,提供两种不同的电影推荐方式。项目融合了协同过滤和深度学习技术,为用户提供了两种不同但有效的电影推荐方式。这可以提高用户体验,使他们更容易找到符合他们口味的电影。原创 2023-09-21 20:39:52 · 1031 阅读 · 0 评论 -
基于Android+OpenCV+CNN+Keras的智能手语数字实时翻译——深度学习算法应用(含Python、ipynb工程源码)+数据集(四)
本项目依赖于Keras深度学习模型,旨在对手语进行分类和实时识别。为了实现这一目标,项目结合了OpenCV库的相关算法,用于捕捉手部的位置,从而能够对视频流和图像中的手语进行实时识别。这对于听觉障碍者和手语使用者来说是一个有益的工具,可以帮助他们与其他人更轻松地进行交流和理解。原创 2023-09-20 14:22:02 · 1018 阅读 · 0 评论 -
基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(三)
本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。原创 2023-09-19 11:23:33 · 441 阅读 · 0 评论 -
基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(四)
本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。原创 2023-09-19 11:23:39 · 474 阅读 · 0 评论 -
基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(二)
本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。原创 2023-09-19 11:22:46 · 915 阅读 · 0 评论 -
基于GBDT+Tkinter+穷举法按排队时间预测最优路径的智能导航推荐系统——机器学习算法应用(含Python工程源码)+数据集(一)
本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。原创 2023-09-19 11:21:40 · 507 阅读 · 0 评论 -
基于随机森林+小型智能健康推荐助手(心脏病+慢性肾病健康预测+药物推荐)——机器学习算法应用(含Python工程源码)+数据集(三)
本项目基于Kaggle公开数据集,进行心脏病和慢性肾病的特征筛选和提取,选择随机森林机器学习模型进行训练,预判是否有疾病、针对相应的症状或需求给出药物推荐,实现具有实用性的智能医疗助手。这种智能医疗助手有望提高医疗决策的准确性,为患者提供更好的医疗体验,并对医疗资源的合理分配起到积极作用。原创 2023-09-18 09:57:49 · 727 阅读 · 3 评论 -
基于随机森林+小型智能健康推荐助手(心脏病+慢性肾病健康预测+药物推荐)——机器学习算法应用(含Python工程源码)+数据集(二)
本项目基于Kaggle公开数据集,进行心脏病和慢性肾病的特征筛选和提取,选择随机森林机器学习模型进行训练,预判是否有疾病、针对相应的症状或需求给出药物推荐,实现具有实用性的智能医疗助手。这种智能医疗助手有望提高医疗决策的准确性,为患者提供更好的医疗体验,并对医疗资源的合理分配起到积极作用。原创 2023-09-18 09:57:38 · 1304 阅读 · 1 评论 -
基于随机森林+小型智能健康推荐助手(心脏病+慢性肾病健康预测+药物推荐)——机器学习算法应用(含Python工程源码)+数据集(一)
本项目基于Kaggle公开数据集,进行心脏病和慢性肾病的特征筛选和提取,选择随机森林机器学习模型进行训练,预判是否有疾病、针对相应的症状或需求给出药物推荐,实现具有实用性的智能医疗助手。这种智能医疗助手有望提高医疗决策的准确性,为患者提供更好的医疗体验,并对医疗资源的合理分配起到积极作用。原创 2023-09-18 09:57:29 · 833 阅读 · 0 评论 -
基于Pandas+余弦相似度+大数据智能护肤品推荐系统——机器学习算法应用(含Python工程源码)+数据集
本项目结合了Pandas数据处理工具和机器学习技术,旨在构建一个智能的护肤品推荐系统。该系统不仅会考虑用户的肤质特征,还会考虑过敏反应等因素,并筛选出相互禁忌的产品,以便为不确定如何选择护肤品的用户提供个性化的推荐。原创 2023-09-14 11:51:55 · 1278 阅读 · 0 评论 -
基于Django+node.js+MySQL+杰卡德相似系数智能新闻推荐系统——机器学习算法应用(含Python全部工程源码)+数据集
项目基于中文分词库jieba的技术基础上构建,用于提取新闻文章中的关键词,然后根据这些关键词来获取相关的新闻内容。项目还使用了杰卡德相似系数来计算不同新闻文章之间的相似度。当用户浏览某一篇新闻时,系统能够智能地推荐与该新闻相关的其他新闻。对于新闻阅读者来说,可以提供更丰富的新闻体验,帮助他们更全面地了解感兴趣的主题和新闻事件。原创 2023-09-01 17:04:36 · 780 阅读 · 0 评论 -
基于Dlib库+SVM+Tensorflow+PyQT5智能面相分析-机器学习算法应用(含全部工程源码)+训练及测试数据集
本项目利用Dlib库的训练模型,用于提取面部特征。在人脸检测的同时,精确定位了面部的68个关键点,然后利用这些特征进行基于SVM的分类。这样就实现了面相分析,通过面部特征来对不同的面相进行分类和分析。原创 2023-08-08 09:20:48 · 1360 阅读 · 0 评论 -
基于Python爬虫+KNN数字验证码识别系统——机器学习算法应用(含全部工程源码)+训练数据集
项目目标:通过爬虫技术和图像处理算法,实现对验证码图片的自动识别和准确率验证。它可以应用于需要处理大量验证码的场景,如自动化测试、数据采集等。通过训练和验证模型的过程,我们可以不断提升验证码识别的准确性和稳定性,提高验证码处理的效率。原创 2023-07-06 11:14:21 · 1458 阅读 · 0 评论 -
基于Python爬虫+K-means机器学习算法今日热点新闻推荐系统——热点推荐、热词呈现及个性化分析(含全部工程源码)
本项目基于网络爬虫技术爬取新闻,进行中文分词和特征提取,形成相似的新闻集,通过K-means算法进行聚集,最终集热点推荐、热词呈现及个性化分析等操作于一体,实现新闻推荐功能。原创 2023-06-29 18:39:04 · 2993 阅读 · 2 评论 -
基于TF-IDF算法个人文件管理系统——机器学习+人工智能+神经网络(附Python工程全部源码)
本项目旨在通过应用TF-IDF算法,将新下载的课件进行自动分类整理。我们的方法是通过比较新文件中的词频与已构建的各学科语料库的词频,利用余弦相似度计算高频词的相关系数,从而匹配到最相近的学科。它可以帮助用户节省大量的时间和精力,提高工作效率,并确保课件文件被准确地整理到相关的学科文件夹中。原创 2023-06-24 11:00:00 · 421 阅读 · 0 评论 -
基于Python+OpenCV图像识别的连连看辅助工具(深度学习+机器视觉)含全部工程源码及视频演示
本项目目标是利用pywin32来获取游戏图像信息,并利用OpenCV进行识别和处理,从而实现QQ连连看游戏中相同图形的连通。这个项目不仅可以帮助玩家提高连连看的技能,还可以作为一个有趣的学习项目,深入研究图像处理和计算机视觉的应用。无论是解锁更高级别的成就,还是探索图像处理的奥秘,这个项目都将给你带来无尽的乐趣和挑战!原创 2023-06-23 11:00:00 · 1809 阅读 · 0 评论 -
基于Python+tensorflow深度学习VGG-19图像风格迁移+自动去噪(MNIST数据集)机器学习+人工智能+神经网络——含全部Python工程源码
图像风格迁移是一种通过将图像的内容与另一个图像的风格相结合,生成新图像的技术。通过将待处理的图像输入VGG-19模型,我们可以获得图像的内容特征和风格特征。然后,利用风格迁移算法,将图像的内容特征与一个风格图像的风格特征进行融合。这样,我们可以生成一张具有原始图像内容但具有去除噪声的新图像。本项目基于 MNIST 数据集,使用 VGG-19 网络模型,将图像进行风格迁移,实现去噪功能。原创 2023-06-22 11:00:00 · 2314 阅读 · 0 评论 -
基于深度学习FasterRCNN模型Restnet50 的生活垃圾智能分类(准确率达84%)-含python工程全源码
本项目基于Faster R-CNN模型,通过RPN网络(Region Proposal Network)获取图片中的候选区域,并利用RestNet50模型提取特征,旨在通过智能化的图片分析和特征提取,实现对生活垃圾的智慧分拣。这项技术有助于提高垃圾处理的效率和准确性,为环境保护和资源回收做出贡献。原创 2023-06-21 11:45:45 · 3170 阅读 · 1 评论 -
基于Python机器学习算法小分子药性预测(岭回归+随机森林回归+极端森林回归+加权平均融合模型)
本项目基于机器学习算法(岭回归+随机森林回归+极端森林回归+加权平均融合模型),通过对单模型和融合模型计算所得的指标进行对比,旨在实现对小分子在人体内清除率指标的预测。这项技术可以进行二次开发,为药物研发提供准确的预测结果,加速候选药物的筛选过程,为研发人员提供宝贵的指导,推动药物研发的进展。原创 2023-06-20 11:30:00 · 1441 阅读 · 1 评论 -
基于Python垃圾短信识别程序(KNN、逻辑回归、随机森林、决策树和多项式分布朴素贝叶斯、伯努利分布朴素贝叶斯等算法进行融合)—含python工程全源码
本项目以Python为基础,旨在开发一款垃圾短信识别程序。我们将采用KNN、逻辑回归、随机森林、决策树和朴素贝叶斯等多种算法进行融合,以提高识别准确率,并进行测试和应用。小伙伴们可以通过二次开发,将它应用来处理实际场景中的短信数据。这项技术可以应用于移动通信网络、社交媒体平台等领域,帮助用户自动过滤和识别垃圾短信,提升通信效率和用户体验。原创 2023-06-19 17:07:04 · 3081 阅读 · 3 评论 -
基于机器学习算法:朴素贝叶斯和SVM 分类-垃圾邮件识别分类系统(含Python工程全源码)
本项目采用朴素贝叶斯和支持向量机(SVM)分类模型作为基础,通过对垃圾邮件和正常邮件的数据进行训练,旨在实现垃圾邮件的自动识别功能。通过训练这两个分类模型,我们的目标是建立一个高效准确的垃圾邮件识别系统。当接收到新的邮件时,系统将对邮件文本进行预处理,并利用训练好的模型进行分类。根据模型的预测结果,我们可以准确地判断邮件是否为垃圾邮件,从而进行相应的处理。原创 2023-06-17 11:32:20 · 6922 阅读 · 4 评论