chatGPT做了这么一道数学题,我陷入了沉思

文章讨论了一个涉及正弦和余弦的三角方程在a属于(-3π/2,-π)的范围内如何求解,并得出特定表达式的值。通过分析sina小于0的条件,推导出给定表达式的结果为-1/2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知

2 c o s 2 + 3 c o s a s i n a − 3 s i n 2 a = 1 , 并且 a ∈ ( − 3 2 π , − π ) 2cos^{2}+3cosasina-3sin^{2}a=1 ,并且a\in(-\frac{3}{2}\pi,-\pi) 2cos2+3cosasina3sin2a=1,并且a(23π,π)

2 s i n ( π − a ) − 3 s i n ( π 2 + a ) ) 4 s i n a − 9 c o s a \frac{2sin(\pi-a)-3sin(\frac{\pi}{2}+a))}{4sina-9cosa} 4sina9cosa2sin(πa)3sin(2π+a))

chatGPT回复:
在这里插入图片描述

注意到 a ∈ ( − 3 2 π , − π ) a\in(-\frac{3}{2}\pi,-\pi) a(23π,π),因此 sin ⁡ a < 0 \sin a<0 sina<0。然后有

在这里插入图片描述

因此 2 sin ⁡ ( π − a ) − 3 sin ⁡ ( π 2 + a ) 4 sin ⁡ a − 9 cos ⁡ a = − 1 2 \dfrac{2\sin(\pi-a)-3\sin(\frac{\pi}{2}+a)}{4\sin a-9\cos a}=-\dfrac{1}{2} 4sina9cosa2sin(πa)3sin(2π+a)=21

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平塘码道

谢谢你的打赏, 我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值