最小二乘法概念和代码示例

最小二乘法是一种优化技术,常用于求解机器学习中模型参数。它通过最小化误差平方和找到最佳函数匹配,适用于数据曲线拟合。文章介绍了最小二乘法的推导,并提供了代码示例来计算参数并展示拟合效果。
摘要由CSDN通过智能技术生成

最小二乘法

  • 最小二乘法( Least Squares Method,又称最小平方法),是一 种数学优化技术,求解机器学习算法的模型参数的常用方法之一
  • 通过最小化误差的平方和寻找数据的最佳函数匹配
  • 利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数 据与实际数据之间误差的平方和为最小
  • 最小二乘法还可用于曲线拟合
  • 下列是具体推导方法,利用偏导数算出参加a和b,假设y=ax+b:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述下面是用代码对给出的一组x和y值,利用最小二乘法算出参数a,b,并画图显示模型和数据的拟合情况。
import numpy as np import matplotlib.pyplot as plt
#最小二乘法
def LSE(x,y):    
    n = len(x)      
    sumX,sumY,sumXY,sumXX = 0,0,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值