最小二乘法
- 最小二乘法( Least Squares Method,又称最小平方法),是一 种数学优化技术,求解机器学习算法的模型参数的常用方法之一
- 通过最小化误差的平方和寻找数据的最佳函数匹配
- 利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数 据与实际数据之间误差的平方和为最小
- 最小二乘法还可用于曲线拟合
- 下列是具体推导方法,利用偏导数算出参加a和b,假设y=ax+b:
下面是用代码对给出的一组x和y值,利用最小二乘法算出参数a,b,并画图显示模型和数据的拟合情况。
import numpy as np import matplotlib.pyplot as plt
#最小二乘法
def LSE(x,y):
n = len(x)
sumX,sumY,sumXY,sumXX = 0,0,