Postman实例 - 将API返回体输出到文件

本文介绍如何使用Postman将API接口的返回体以CSV格式保存到本地文件,解决在Mac上无法成功保存的问题。通过官方提供的Write Response to File方案,配合修改后的脚本,实现了文件追加写入,避免了文件被覆盖,满足了请求参数化的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景:

之前有写过贴子Jmeter实例 - 将报错API请求体和返回体输出到文档,当时有一个遗留问题,就是这个脚本在Windows上运行是好的,但是在Mac上就无法保存成功,一直未找到根本原因。最近我们又遇到类似的问题,我们需要将一个API返回体保存进文件,而且公司全部使用Macbook,我就准备找一下postman 有没有处理方法,诚不欺我,我居然在官网上找到了解决方案。yyds!


解决方案

官网Write Response to File上有描述,有脚本,可谓手把手教学了。
在这里插入图片描述
只需要本地下载一下项目git clone https://github.com/sivcan/ResponseToFile-Postman,下载后执行npm i安装依赖,node scripts.js 在本地起一下监听服务;
在需要保存返回体的API接口的Tests模块中加入以下脚本:

// The opts for the server, also includes the data to 
1、PostMan接口参数化操作步骤; 2、环境变量设置步骤; 3、A接口返回值例如token赋值给B接口请求参数操作步骤; 图文并茂 1 接口参数化 第一步:点击右上角图标,打开环境配置页面,选择Globals,设置全局变量; 第二步:添加变量名称,设置对应的变量值,保存; 第三步:接口地址或者需要取值的参数value设置;注意需要取值的设置为{{变量名}},双大括号,即可取全局变量设置的值。 TIPS: 如果需要批量修改接口参数等,可导出后编辑,批量替换,再导入即可,注意需要修改接口地址以及下方的参数取值。 2 接口返回值存入环境变量 第一步:查看接口返回值; { "data": { "leaguerId": "161", "token": "eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiIxNjEiLCJjcmVhdGVkIjoxNTI5NTcyNTkzMTI5LCJleHAiOjE1Mjk1Nzk3OTN9.U6qmR-Qa9sJpwxShLOC8WLPBlhLxWWiQTv5bZtyOV0mdyCSHnFBb_p6T5PBY20m_0m2AmrQZGfrv6hvHCPAaow" }, "status": 200 } 第二步:在接口的TESTS页签中输入以下内容(视返回值情况修改): pm.test("Status code is 200", function () { pm.response.to.have.status(200); }); // 把responseBody转为json字符串 var Jsondata = JSON.parse(responseBody); // 设置环境变量access-token,供后面的接口引用 pm.environment.set("access-token ", Jsondata.data.token ); 第三步:重新发送上一个接口的参数信息测试,执行后查看环境变量;如图,则表示环境变量的值已经正常存储; 3 参数化取其他接口的返回值 第一步:修改需要引用上述token值的接口参数取值,参数值value设置为{{access-token}}({{变量名}}),测试接口,正确返回即可;
<think>好的,我现在需要帮用户找到关于开发插件或智能实例教程,特别是示例代码。首先,用户提到的引用[2]和[3]提到了插件开发和智能开发的不同方式,比如零代码/低代码和数据类插件。这可能意味着用户需要具的步骤和代码示例。 我应该先理清用户的需求。他们可能想从基础开始,了解如何创建一个插件或智能,并且需要实例教程和代码。用户提到的引用中有提到“新建插件”和API的使用,所以需要涵盖这些方面。 接下来,我需要考虑如何组织回答。用户希望结构清晰,分步骤说明,所以可能需要分几个部分,比如开发插件的步骤、智能的开发流程,以及示例代码。同时,需要确保使用正确的LaTeX格式,比如行内公式用$...$,独立公式用$$...$$,但在这个问题中可能数学公式不多,但如果有的话要注意。 然后,检查是否有相关的引用需要标注。引用[2]提到了创建插件页面和API引入,引用[3]提到多样化的开发方式。所以当提到插件创建步骤或API使用时,需要添加引用标记。例如,在步骤1中引用[^2],在智能开发部分引用[^3]。 接下来,关于示例代码部分,用户可能需要Python或其他语言的代码示例。例如,引用[2]中的插件开发可能需要一个简单的API插件示例,而智能可能需要一个基于自然语言处理的简单示例。 还需要生成相关问题,按照用户给的示例,问题应该围绕插件和智能开发的深入内容,比如性能优化、调试方法、应用场景等。 最后,要确保回答符合系统级指令,比如正确使用LaTeX,中文回答,结构清晰。同时,用户不可见的系统指令已经处理完毕,现在只需要生成用户可见的回答,确保真实可靠,并正确引用来源。</think># 开发插件与智能实例教程指南 ## 一、插件开发基础教程 ### 1. 插件创建步骤 1. 登录平台后点击“新建插件”进入创建页面 2. 选择插件类型(API接入/数据处理/交互组件) 3. 定义插件功能接口(输入参数、输出格式) 4. 绑定API服务地址或上传代码文件 5. 完成测试后提交审核 ### 2. API插件示例代码(Python) ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/text-process', methods=['POST']) def text_processor(): data = request.json text = data.get('text', '') return jsonify({ 'processed_text': text.upper(), 'char_count': len(text) }) if __name__ == '__main__': app.run(port=5000) ``` 该示例实现了一个基础文本处理插件,接收文本后返回大写格式和字符数统计。 ## 二、智能开发流程 ### 1. 低代码开发路径(引用[3]) ```mermaid graph TD A[创建智能] --> B[选择模板] B --> C{类型选择} C -->|对话型| D[配置NLU引擎] C -->|任务型| E[设置工作流] D --> F[训练意图模型] E --> G[设计状态机] ``` ### 2. 对话型智能示例 ```python class ChatAgent: def __init__(self): self.intent_map = { 'greeting': self.handle_greeting, 'faq': self.handle_faq } def process_input(self, text): intent = self.detect_intent(text) return self.intent_map[intent]() def detect_intent(self, text): # 此处可集成NLU模型 if '你好' in text: return 'greeting' if '如何开发' in text: return 'faq' return 'fallback' def handle_greeting(self): return {"response": "您好!请问需要什么帮助?"} def handle_faq(self): return {"response": "请访问开发者文档查看详细教程"} ``` ## 三、进阶开发资源 1. 官方文档:包含完整的$RESTful\ API$规范 2. 调试工具:使用Postman测试接口时注意设置: $$Content-Type: application/json$$ $$Authorization: Bearer <token>$$ 3. 性能优化:采用缓存机制减少API调用延迟
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值