- 博客(643)
- 资源 (10)
- 收藏
- 关注
原创 python3实现把html转成数组
运行python html_to_keil.py。Inc文件夹下生成login_html.h。web里放 login.html。
2025-11-27 15:31:46
767
原创 C# 创建配置+宏定义编译不同选项卡+自定义文件名+自定义exe标题
在 活动解决方案配置 下拉框中,选择 新建。在顶部配置中选择 Release_plus。打开 配置管理器(生成 → 配置管理器)条件编译符号:BASIC_VERSION。条件编译符号:PLUS_VERSION。输入名称:Release_plus。在顶部配置中选择 Release。从现有配置复制:Release。程序集名称:Tool-Plus。步骤1:创建新的构建配置。步骤2:配置项目属性。程序集名称:Tool。
2025-11-19 10:26:43
190
原创 U盘安装群晖RR引导
SCP上传DSM_SA6400_69057.pat。rr-24.8.2.img, 烧录rr.img。DEL进BIOS,设置U盘启动。选择型号,SA6400。
2025-10-18 22:55:12
593
原创 5. 神经网络的学习
这是因为,当出现np.log(0)时, np.log(0)会变为负无限大的-inf,这样一来就会导致后续计算无法进行。如式(4.1)所示,均方误差会计算神经网络的输出和正确解监督数据的各个元素之差的平方,再求总和。但是,一般而言,损失函数很复杂,参数空间庞大,我。前面介绍的损失函数的例子中考虑的都是针对单个数据的损失函数。梯度是(6, 8)、点(0, 2)处的梯度是(0, 4)、点(3, 0)处的梯度是(6, 0)。概率,因此上例表示“0”的概率是0.1,“1”的概率是0.05,“2”的概率是0.6。
2025-10-14 17:35:09
979
8
原创 4. 手写数字识别,推理,批处理
假设学习已经全部结束,我们使用学习到的参数,先实现神经网络的“推理处理”。这个推理处理也称为神经网络的前向传播(forward propagation)。求解机器学习问题的步骤(分成学习和推理两个阶段进行)一样,使用神经网络解决问题时,也需要首先使用训练数据(学习数据)进行权重参数的学习;进行推理时,使用刚才学习到的参数,对输入数据进行分类。
2025-10-11 13:12:11
678
原创 2. 多维数值
这 里, A 和 B 都 是 2 × 2 的 矩 阵,它 们 的 乘 积 可 以 通 过 NumPy 的。数,并返回数组的乘积。图3-12中, 3 × 2的矩阵A和2 × 4 的矩阵B的乘积运算生成了3 × 4的。比如,如果用Python计算2 × 3 的矩阵A和2 × 2的矩阵C的乘。的形状是2 × 3,矩阵B的形状是3 × 2,矩阵A的第1维的元素个数(3)和。第1行第1列的元素, A的第2行和B的第1列的结果是新数组的第2行第1。2 × 3的矩阵A和3 × 2的矩阵B的乘积可按以上方式实现。
2025-10-09 16:41:32
621
原创 1. 激活函数
在神经网络发展的历史上, sigmoid函数很早就开始被使用了,而最近则主要使用ReLU(Rectified Linear Unit)函数。信号的加权总和为节点a,然后节点a被激活函数h()转换成节点y。激活函数以阈值为界,一旦输入超过阈值,就切换输出。也就是说,在激活函数的众多候选函数中,感知机使用了阶跃函数。果将激活函数从阶跃函数换成其他函数,就可以进入神经网络的世界了。阶跃函数以0为界,输出从0切换为1(或者从1切换为0)。h(x)函数会将输入信号的总和转换为输出信号,这种函数。
2025-10-09 15:39:44
354
原创 一阶低通滤波器应用示例(演示)
这段代码实现了一个一阶低通滤波器(也称为指数加权移动平均滤波器)。它适用于需要平滑数据、减少噪声的场合。以下是一些常见的应用场景:传感器数据平滑:在嵌入式系统或物联网设备中,传感器(如温度、湿度、加速度计、陀螺仪)的读数可能含有高频噪声,通过一阶低通滤波可以平滑数据,使其更稳定。去抖动(Debouncing):在读取机械开关或按钮输入时,可能会因为机械振动产生多次快速变化(抖动),使用滤波可以消除抖动,获得稳定的状态。音频处理:在音频信号处理中,低通滤波可以用于去除高频噪声或实现简单的音效。控制系统:在控制
2025-09-05 17:47:39
741
原创 卷积神经网络为什么要填充(Padding)
填充(Padding)是卷积神经网络中一个至关重要且巧妙的设计。它的核心目的可以概括为:为了解决卷积操作导致的特征图尺寸缩小和边缘信息丢失问题。
2025-08-29 17:39:02
327
原创 np.convolve填充same模式详解
mode=‘same’) 中,为了确保输出长度与输入长度相同,总共需要添加的填充量确实是 M-1(其中 M 是卷积核的长度)。mode=‘same’ 的目标是确保输出数组的长度与输入数组的长度相同。对于长度为 N 的输入和长度为 M 的卷积核,输出长度也应为 N。左侧填充:(M - 1) // 2 = 3 // 2 = 1 个元素。对于偶数长度卷积核,没有真正的中心点,因此采用这种非对称填充来近似。右侧填充:总填充量 - 左侧填充 = 3 - 1 = 2 个元素。偶数长度卷积核的填充策略。
2025-08-29 15:18:12
410
原创 卷积理解-excel数据图表演示
我们考虑一个简单的情况,就像处理时间序列数据一样。想象你正在观察某个城市在一周内的每日气温变化。你想要通过一维卷积来平滑这些数据,以便更好地理解气温趋势(在该例子其实就是三个连续数值不同加权求和得到一个代表性的数值)。我们使用一维卷积核来平滑气温数据,从而减少数据中的噪声,更好地观察气温的整体变化趋势。卷积的值实际是原始3个数据的加权和。
2025-08-29 10:57:05
317
原创 MNIST 数据集mnist.npz详解
60,000 张训练图像10,000 张测试图像每张图像是 28×28 像素的灰度图像每个图像对应一个 0-9 的数字标签。
2025-08-25 17:15:10
745
原创 stats_display()打印内容
LINKxmit: 0recv: 0fw: 0drop: 0chkerr: 0lenerr: 0memerr: 0rterr: 0proterr: 0opterr: 0err: 0ETHARPxmit: 2recv: 47fw: 0drop: 0chkerr: 0lenerr: 0memerr: 0rterr: 0proterr: 0opterr: 0err: 0IP_FRAGxmit: 0。
2025-08-20 17:58:29
301
原创 GD32F330 dma串口发送后会2次进TC
调试发现USART_CTL0(usart_periph) &= ~USART_CTL0_TEN;执行完这条之后,TC就置1。
2025-07-26 11:13:10
5577
原创 Python11中创建虚拟环境、安装 TensorFlow
运行简单测试,在(tf_env) PS J:\Prog\python\tf_env\Scripts> 复制上去就可以了。在 J:\Prog\python\tf_env\Scripts 目录下生成 requirements.txt 文件。正确应显示:J:\Prog\python\tf_env\Scripts。命令提示符显示 (tf_env) 前缀。
2025-07-06 17:25:53
1351
原创 python pip 下载慢
print(f’成功安装 pandas 版本: {pd.避免每次都需要指定镜像源,设置后,后续所有 pip install 命令都会使用清华镜像源。如果仍然缓慢,尝试这些方法。
2025-07-06 11:26:52
398
原创 ESXi 8.0 SATA硬盘直通
其中,8086是PCIE设备的供应商ID,54d3是PCIE设备的设备ID,这两个参数在第二步中获取,不要填写错误,d3d0和false则直接复制即可。
2025-07-05 20:51:00
1934
原创 ESXi 8.0安装
新nvme固态,先在PC上格式化下,不然可能N100可能不认。管理后台,主要用来:1)设置密码,2)修改网络配置。按F2, 输入密码,进入ESXI管理后台。选择第一项,然后按回车键,选择哪个网口。通过上下键选择要用来管理ESXI的网口。输入密码,字母小写+字母大写+数字。使用群晖,突然nvme固态坏了。通过键盘上下键,移动选择第五项。按空格确定选项,然后配置DNS。选择静态IP后,输入IP等。在PC上可以输入IP登录了。Web控制台的管理操作。管理-许可-分配许可证。
2025-07-05 20:26:52
599
原创 xQueueReceive()返回值详解
xQueueReceive() 是 FreeRTOS 中用于从队列接收数据的核心函数。理解其返回值对于正确处理队列通信、任务同步和错误管理至关重要。
2025-06-27 10:41:07
336
ServiceTest(Android创建服务实例图文实测)
2020-10-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅