CUG_UESTC的博客

滴水穿石非一日之功

Multi-Label Transfer Learning for Semantic Similarity

介绍 本文提出了一种新颖的多标签迁移学习方法,以共同学习多个注释提供的信息,而不是将它们视为独立的任务。 随着句子编码器的最新发展和成功,将句子映射到固定长度矢量或句子嵌入,一种方法是首先使用预训练模型计算每个句子的嵌入,然后输出两个嵌入之间的余弦相似度。 作为预测的相似性。由于这些句子编码...

2018-07-04 17:36:47

阅读数 179

评论数 0

python常用函数和使用技巧日常总结(不定期更新)

感觉专门花费大量时间去精通一门语言是很困难的,因为许多高深的用法即使你当时学会了,也会因为很少使用导致你很快忘记。反倒是在平时的学习过程中遇到一些很棒的用法记录下来,以便以后使用倒很有帮助。所以打算专门用一篇博文记录我所遇到的python语言中如numpy、matplotlib等比较棒的库的函数用...

2018-01-14 15:13:14

阅读数 1050

评论数 0

python超精简代码实现快速排序

在学习CS231n课程的时候,看到作者给的快排示例,觉得特精简,就记下来了。 以前在课本上看到的快排使用循环写的,感觉相对比较复杂,这个递归的思想,虽然代码执行速度上可能没有循环快,但是代码可读性很强,对理解快排也是很有帮助。 def quicksort(arr): if len(...

2018-01-08 14:58:46

阅读数 548

评论数 0

win10+ubuntu双系统配置

对于win10和ubuntu双系统的安装,毫不夸张的说不下50次了,强制关机重启估计接近200次,浏览的教程不下100个,终于今天,历史性的安装成功了,为了避免时间长了遇到同样的问题不知道怎么解决,还是打算记下来,同时也可以帮助其他有需要的伙伴轻松配置双系统和引导。首先需要说的是安装本来不是一件特...

2017-12-22 21:19:06

阅读数 28051

评论数 19

神经网络和深度学习(三)——反向传播工作原理

反向传播算法工作原理在上一篇文章,我们看到了神经网络如何通过梯度下降算法学习,从而改变权重和偏差。但是,前面我们并没有讨论如何计算代价函数的梯度,这是一个很大的遗憾。这一篇文章,我们将介绍一种称为反向传播的快速计算梯度的算法。使用反向传播算法学习的神经网络比其他早期的方法要快很多,这使得使用神经网...

2017-08-29 16:57:19

阅读数 2250

评论数 2

神经网络和深度学习(二)——一个简单的手写数字分类网络

一个简单的手写数字分类网络接上一篇文章,我们定义了神经网络,现在我们开始手写体的识别。我们可以将识别手写数字这个问题划分为两个子问题,一,我们需要将一幅包含了许多数字的图像分解为一系列独立的图像,每一幅图像包含了一个数字。比如,我们需要把下图分解: 将该图分解为6幅独立的图像: 我们人...

2017-08-18 17:04:40

阅读数 7114

评论数 9

神经网络和深度学习(一)——初识神经网络

神经网络和深度学习 神经网络:一种可以通过观测数据使计算机学习的仿生语言范例 深度学习:一组强大的神经网络学习技术神经网络和深度学习目前提供了针对图像识别,语音识别和自然语言处理领域诸多问题的最佳解决方案。传统的编程方法中,我们告诉计算机如何去做,将大问题划分为许多小问题,精确地定义了计算机很容易...

2017-08-15 19:18:17

阅读数 28241

评论数 4

社团挖掘算法——BGLL算法

在说明该社团分解的算法前,先简单介绍一下模块度的概念(modularity),该值被定义为: 其中AijA_{ij} 表示节点i之间的权值(无向图边权值为1),kik_i 表示网络中节点i的权值之和,cic_i表示节点i所属的社区,如果i和j在同一个社区则δ(ci,cj)=1\delta(c...

2017-08-10 10:32:53

阅读数 5660

评论数 4

matplotlib(三)——Working with text

基础的text命令下面这些命令是在pyplot用户界面中创建文本: text()——在axes中任意位置添加文本 xlabel()——在X轴上添加轴标签 ylabel()——在Y轴上添加轴标签 title()——给axes添加标题 figtext()——给一个figure中任意位置添加文本 sup...

2017-01-12 20:08:30

阅读数 2621

评论数 0

matplotlib(二)——style sheets定制图、工具栏

使用style sheets定制图style package提供了对切换图表样式的支持,它里面的参数与matplotlib.rc(matplotlib中默认的样式表文件 )中的参数一样。看一下matplotlibrc文件中的内容,在windows中它位于matplotlib\mpl-data目录下...

2017-01-10 14:11:42

阅读数 2277

评论数 0

matplotlib(一)——pyplot使用简介

pyplot介绍matplotlib.pyplot是一个有命令风格的函数集合,它看起来和MATLAB很相似。每一个pyplot函数都使一副图像做出些许改变,例如创建一幅图,在图中创建一个绘图区域,在绘图区域中添加一条线等等。在matplotlib.pyplot中,各种状态通过函数调用保存起来,以便...

2017-01-05 11:02:59

阅读数 38658

评论数 13

Python成长之路(四)——循环设计、循环对象、函数对象、错误处理、动态类型

Python成长之路(四)——循环设计、循环对象、函数对象、错误处理、动态类型

2016-12-22 15:53:14

阅读数 440

评论数 0

NetworkX使用手册

介绍NetworkX是一款Python的软件包,用于创造、操作复杂网络,以及学习复杂网络的结构、动力学及其功能。 有了NetworkX你就可以用标准或者不标准的数据格式加载或者存储网络,它可以产生许多种类的随机网络或经典网络,也可以分析网络结构,建立网络模型,设计新的网络算法,绘制网络等等。 ...

2016-12-21 14:09:45

阅读数 14256

评论数 2

Python成长之路(三)——词典、文本文件的输入输出、模块、函数的参数传递

Python成长之路(三)——词典、文本文件的输入输出、模块、函数的参数传递

2016-12-19 16:57:36

阅读数 990

评论数 0

Python成长之路(二)——循环、函数、面向对象

Python成长之路(二)——循环、函数、面向对象

2016-12-18 16:43:06

阅读数 487

评论数 1

Python成长之路(一)——准备、基本数据类型、序列、运算、缩进和选择

Python成长之路(一)——准备、基本数据类型、序列、运算、缩进和选择

2016-12-17 21:07:36

阅读数 2575

评论数 0

Git快速上手

What is Git首先我们需要知道Git是什么,Git是一个分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目,在此之前,人们都是使用的集中式的版本控制系统(CVS,SVN)。要知道分布式版本控制系统的优先,就需要先了解集中式版本控制系统是如何工作的。 集中式版本控制系统 集中式...

2016-12-05 20:35:52

阅读数 426

评论数 0

信息安全与密码学概论

一篇文章让你初步了解信息安全领域。 1、简述安全攻击,安全机制,安全服务安全攻击:任何危及信息系统安全的行为。 安全机制:用来检测、阻止攻击或者从攻击状态恢复到正常状态的过程。 安全服务(安全属性):使用一种或多种安全机制来增强安全、对抗安全攻击的过程。 2、安全服务(安全属性)的几个属性...

2016-11-25 10:43:21

阅读数 3318

评论数 0

Linux成长之路(八)——Linux进程管理

Linux进程管理Linux进程的基本概念和核心内容是很复杂也很多的,这里我也不仔细介绍,大家可以自行学习,这里主要介绍对进程的一些管理和控制的基本操作。 进程的查看 不管在测试的时候还是在实际的生产环境中或者自己的使用过程中,难免遇到进程的一些异常,所以 Linux 为我们提供了一些工具可以...

2016-11-21 17:16:29

阅读数 660

评论数 0

Linux成长之路(七)——正则表达式和Linux下软件安装

正则表达式首先要讲清楚正则表达式本身就需要许多内容,这里就不单独讲解有关正则表达式的详细内容。这里主要介绍grep、sed、awk这几个命令。 grep模式匹配命令基本操作 grep命令用于打印输出文本中匹配的模式串,它使用正则表达式作为模式匹配的条件。grep支持三种正则表达式引擎,分别用三个...

2016-11-21 09:21:56

阅读数 708

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭