ML&DL
机器学习&深度学习相关理论学习和实战
Wimb
后端开发
展开
-
Pycharm + Anaconda 的Python3.7遇到“ImportError: DLL load failed: 找不到指定的模块”解决办法
【环境】 使用的电脑系统:win10 使用的集成开发环境:Pycharm 使用的python版本:Python3.7 Anaconda 就是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本。Anaconda包含了conda、Python在内的超过180个科学包及其依赖项,conda是开源包(packages)和虚拟环境(environment...转载 2019-11-19 21:28:57 · 672 阅读 · 0 评论 -
Python-OpenCV基础:图像的读写,尺寸和保存
为什么使用Python-OpenCV虽然python 很强大,而且也有自己的图像处理库PIL,但是相对于OpenCV 来讲,它还是弱小很多。跟很多开源软件一样OpenCV 也提供了完善的python 接口,非常便于调用。OpenCV 的稳定版是2.4.8,最新版是4.0,包含了超过2500 个算法和函数,几乎任何一个能想到的成熟算法都可以通过调用OpenCV 的函数来实现,超级方便。Ope...原创 2018-12-10 20:01:22 · 1559 阅读 · 0 评论 -
Python-OpenCV基础:图像的全景拼接
背景介绍图片的全景拼接如今已不再稀奇,现在的智能摄像机和手机摄像头基本都带有图片自动全景拼接的功能,但是一般都会要求拍摄者保持设备的平稳以及单方向的移动取景以实现较好的拼接结果。这是因为拼接的图片之间必须要有相似的区域以保证拼接结果的准确性和完整性。本文主要简单描述如何用 Python 和 OpenCV 库实现两张图片的自动拼合,首先简单介绍一下两张图片拼接的原理。基本原理要实现两张图...原创 2018-12-12 20:11:15 · 5550 阅读 · 2 评论 -
tensorflow提示出错'module' object has no attribute 'pack'
编译旧的代码,会像下面这样提示出错:deconv_shape3 = tf.pack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS])AttributeError: 'module' object has no attribute 'pack' 因为TF后面的版本修改了这个函数的名称,把tf.pack改为 tf.stack。因此只需...原创 2018-12-13 10:42:12 · 257 阅读 · 0 评论 -
Tensorflow - 基础语法
【基本概念】Tensorflow最基本的一次计算过程:接收n个固定格式的数据输入,通过特定函数,将其转化为n个张量(Tensor)输出。数据流图:在逻辑上描述以此机器学习计算的过程。1.数据流图节点:通常以圆、椭圆或方框表示,代表对数据的运算或某种操作边:数据流图是一种有向图,通常用带箭头的线段表示(除了上述概念以外)Session(会话):根据上下文,会话负责管理...原创 2019-05-28 10:36:23 · 613 阅读 · 0 评论 -
深度学习所需的专业知识
1. 数学基础 数学知识比较关键,这是作为你理解和学习算法原理的基础,列出比较关键的课程: 高等数学(微积分)、线性代数、统计方法、矩阵论、概率论 PS:图像相关童鞋 可以看一下《数字图像处理》2. 编程基础 两门编程语言是必须要掌握的,C++ 和 Python3. 专业基础(算法和论文) 基础教程:【UFL...转载 2018-12-24 11:23:03 · 852 阅读 · 0 评论 -
基于深度学习的VQA(视觉问答)技术
视觉问答导读视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a...转载 2019-03-05 10:07:48 · 3018 阅读 · 2 评论 -
LSTM原理详解
LSTM长短时记忆网络(Long Short Term Memory Network, LSTM),是一种改进之后的循环神经网络,可以解决RNN无法处理长距离的依赖的问题,目前比较流行。长短时记忆网络的思路:原始 RNN 的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。再增加一个状态,即c,让它来保存长期的状态,称为单元状态(cell state)。把上图按照时间维度展...原创 2019-03-20 16:14:43 · 43880 阅读 · 0 评论 -
我的第一个深度神经网络及代码实现
【概念】神经网络包含:输入层,隐含层和输出层神经网络初始化时需要实现权重初始化;之后经过比对预测结果利用 反向传播算法(BP)更新权重;【代码实现】#coding:utf-8#neural network class definitionimport numpyimport scipy.spatialclass neuralNetwork: #initia...原创 2019-03-25 21:19:57 · 1744 阅读 · 0 评论 -
【CNN模型笔记(三)】ZFNet模型
一.简介ILSVRC2013分类任务的冠军,使用反卷积对CNN的中间特征图进行可视化分析,通过分析特征行为找到提升模型的办法,微调Alexnet提升了表现。该论文最大的贡献在于通过使用可视化技术揭示了神经网络各层到底在干什么,起到了什么作用。从科学的观点出发,如果不知道神经网络为什么取得了如此好的效果,那么只能靠不停的实验来寻找更好的模型。使用一个多层的反卷积网络来可视化训练过程...原创 2019-06-04 16:33:08 · 1106 阅读 · 0 评论 -
【CNN模型笔记(二)】AlexNet模型+代码实现
由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注。 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷积神经网络乃至深度学习重新引起了广泛的关注。AlexNet创新点:成功应用ReLU激活函数 成功使用Dropout机制 使用了重叠的最大池化(Max Pooling)。此前的CNN通常使用...原创 2019-05-29 16:24:16 · 13754 阅读 · 2 评论 -
计算机视觉研究方向进展
最新计算机视觉动态哪里看?1 背景会议论文比期刊论文更重要的原因是:(1)因为机器学习、计算机视觉和人工智能领域发展非常迅速,新的工作层出不穷,如果把论文投到期刊上,一两年后刊出时就有点out了。因此大部分最新的工作都首先发表在顶级会议上,这些顶级会议完全能反映“热门研究方向”、“最新方法”。(2)很多经典工作大家可能引的是某顶级期刊上的论文,这是因为期刊论文表述得比较完整、实验充分。但实...转载 2018-12-25 13:49:15 · 4545 阅读 · 0 评论 -
【CNN模型笔记(一)】Lenet-5模型+代码实现
LeNet神经网络由深度学习三巨头之一的Yan LeCun提出,他同时也是卷积神经网络 (CNN,Convolutional Neural Networks)之父。LeNet主要用来进行手写字符的识别与分类,并在美国的银行中投入了使用。LeNet的实现确立了CNN的结构,现在神经网络中的许多内容在LeNet的网络结构中都能看到,例如卷积层,Pooling层,ReLU层。虽然LeNet早在20世纪...原创 2019-05-24 10:44:57 · 21991 阅读 · 2 评论 -
CNN经典结构学习笔记
【模型顺序】:LeNet-5;AlexNet;ZFNet;VGGNet;Net In Net;GoogLeNet Inception V1-V4;ResNet;DenseNet;NasNet;SE-Net;MobileNetV1-V2【LeNet-5】1、出处:1998年;Yann LeCun;2、贡献:非常高效的手写体字符识别卷积神经网络;是其他复杂CNN的基础;3、...原创 2019-07-25 16:24:58 · 783 阅读 · 0 评论 -
Receptive field(感受野)
1.先举个例子: e.g.两层 3*3 卷积操作的有效区域(感受野)是5*5 (所有filter的stride=1,pad=0),示意图如下: 三层3*3卷积核操作的有效区域是7*7 (所有filter的stride=1,pad=0),示意图如下: 2. 基本定义 定义:感受野用来表示网络内部的不同神经元对原图像的感受范围的大小,或者说,convNets(cnn)每一层输...转载 2019-06-19 16:16:30 · 311 阅读 · 0 评论 -
一张图解释人工智能、机器学习、深度学习三者关系
首先来一张图: 人工智能:人工智能(ArtificialIntelligence),英文缩写为AI。是计算机科学的一个分支。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具。人工智能实际应用:机器视觉,指纹识别,人脸识别,视网...原创 2018-12-18 13:09:39 · 14103 阅读 · 3 评论 -
机器学习,深度学习,免费数据集汇总
【第一波】目前系统整理了一些网上开放的免费科研数据集,以下是分类列表以及下载地址,供高校和科研机构免费下载和使用。金融美国劳工部统计局官方发布数据 上证A股日线数据,1999.12.09 至 2016.06.08,前复权,1095支股票 深证A股日线数据,1999.12.09 至 2016.06.08,前复权,1766支股票 深证创业板日线数据,1999.12.09 至 2016...转载 2018-12-11 21:32:49 · 3890 阅读 · 0 评论 -
代价函数小结
深度学习中常用的代价函数https://blog.csdn.net/chen645096127/article/details/78991014代价函数详解https://www.cnblogs.com/Belter/p/6653773.html?utm_source=itdadao&utm_medium=referral...转载 2019-01-21 11:20:52 · 454 阅读 · 0 评论 -
梯度下降算法的直观理解以及代码实现
【公式】α在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过α来控制每一步走的距离。α的选择在梯度下降法中往往是很重要的!α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!【详请参考】https://www.jianshu.com/p/c7e642877b0e...转载 2018-12-17 14:11:21 · 675 阅读 · 0 评论 -
“感受野”的直观理解
感受野定义 公式定义衡量某一层的特征图中某个像素点对应到原始输入的响应的大小区域;(另外一种定义)卷积神经网络每一层的输出特征图上的像素点在原始图像上映射的区域大小【直观理解】就是当前的每个像素点对应于原来图片的区域这里的第三层中的1个像素点对于原来图片中的11*11的像素阵列大小公式根据 可推算出公式为:以上公式可以计算出上一层的...原创 2018-12-17 20:29:26 · 1680 阅读 · 1 评论 -
Python实现最简单的线性回归算法
#coding:utf-8from math import sqrtimport matplotlib.pyplot as pltdataset = [[1.2,1.1],[2.4,3.5],[4.1,3.2],[3.4,2.8],[5,5.4]]x = [row[0] for row in dataset]y = [row[1] for row in dataset]pre_y ...原创 2019-05-30 14:57:47 · 1051 阅读 · 0 评论 -
机器学习 - 正则化方法:L1和L2 regularization、数据集扩增、dropout
正则化方法:防止过拟合,提高泛化能力 常用的正则化方法有:L1正则化;L2正则化;数据集扩增;Droupout方法 (1) L1正则化(2) L2正则化(3) Droupout【参考】https://blog.csdn.net/u012162613/article/details/44261657 ...转载 2018-12-17 13:47:44 · 518 阅读 · 0 评论