转载自:http://www.wutianqi.com/?p=1903
Floyd-Warshall算法,简称Floyd算法 ,用于求解任意两点间的最短距离,时间复杂度为O(n^3)。
使用条件&范围 通常可以在任何图中使用,包括有向图、带负权边的图。
Floyd-Warshall 算法用来找出每对点之间的最短距离。它需要用邻接矩阵来储存边,这个算法通过考虑最佳子路径来得到最佳路径。
1.注意单独一条边的路径也不一定是最佳路径。 2.从任意一条单边路径开始。所有两点之间的距离是边的权,或者无穷大,如果两点之间没有边相连。 对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。 3.不可思议的是,只要按排适当,就能得到结果。 伪代码:
1
2
3
4
5
6
7
8
9
10
// dist(i,j) 为从节点i到节点j的最短距离
For i←1 to n do
For j←1 to n do
dist( i,j) = weight( i,j)
For k←1 to n do // k为“媒介节点”
For i←1 to n do
For j←1 to n do
if ( dist( i,k) + dist( k,j) < dist( i,j) ) then // 是否是更短的路径?
dist( i,j) = dist( i,k) + dist( k,j)
我们平时所见的Floyd算法的一般形式 如下:
1
2
3
4
5
6
7
8
void Floyd( ) {
int i,j,k;
for ( k= 1 ; k<= n; k++ )
for ( i= 1 ; i<= n; i++ )
for ( j= 1 ; j<= n; j++ )
if ( dist[ i] [ k] + dist[ k] [ j] < dist[ i] [ j] )
dist[ i] [ j] = dist[ i] [ k] + dist[ k] [ j] ;
}
注意下第6行这个地方,如果dist[i][k]或者dist[k][j]不存在,程序中用一个很大的数代替。最好写成if(dist[i] [k]!=INF && dist[k][j]!=INF && dist[i][k]+dist[k][j]<dist[i][j]),从而防止溢出所造成的错误。 floyd算法的实现以及输出最短路径和最短路径长度,具体过程请看【动画演示Floyd算法】。
代码说明几点:
1、A[][]数组初始化为各顶点间的原本距离,最后存储各顶点间的最短距离。
2、path[][]数组保存最短路径,与当前迭代的次数有关。初始化都为-1,表示没有中间顶点。在求A[i][j]过程中,path[i][j]存放从顶点vi到顶点vj的中间顶点编号不大于k的最短路径上前一个结点的编号。在算法结束时,由二维数组path的值回溯,可以得到从顶点vi到顶点vj的最短路径。
初始化A[][]数组为如下,即有向图的邻接矩阵。
完整的实现代码 如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include <iostream>
#include <string>
#include <stdio.h>
using namespace std;
#define MaxVertexNum 100
#define INF 32767
typedef struct
{
char vertex[ MaxVertexNum] ;
int edges[ MaxVertexNum] [ MaxVertexNum] ;
int n,e;
} MGraph;
void CreateMGraph( MGraph & G)
{
int i,j,k,p;
cout << "请输入顶点数和边数:" ;
cin >> G.n >> G.e ;
cout << "请输入顶点元素:" ;
for ( i= 0 ; i< G.n ; i++ )
{
cin >> G.vertex [ i] ;
}
for ( i= 0 ; i< G.n ; i++ )
{
for ( j= 0 ; j< G.n ; j++ )
{
G.edges [ i] [ j] = INF;
if ( i== j)
{
G.edges [ i] [ j] = 0 ;
}
}
}
for ( k= 0 ; k< G.e ; k++ )
{
cout << "请输入第" << k+ 1 << "条弧头弧尾序号和相应的权值:" ;
cin >> i>> j>> p;
G.edges [ i] [ j] = p;
}
}
void Dispath( int A[ ] [ MaxVertexNum] ,int path[ ] [ MaxVertexNum] ,int n) ;
void Floyd( MGraph G)
{
int A[ MaxVertexNum] [ MaxVertexNum] ,path[ MaxVertexNum] [ MaxVertexNum] ;
int i,j,k;
for ( i= 0 ; i< G.n ; i++ )
{
for ( j= 0 ; j< G.n ; j++ )
{
A[ i] [ j] = G.edges [ i] [ j] ;
path[ i] [ j] = - 1 ;
}
}
for ( k= 0 ; k< G.n ; k++ )
{
for ( i= 0 ; i< G.n ; i++ )
{
for ( j= 0 ; j< G.n ; j++ )
{
if ( A[ i] [ j] > A[ i] [ k] + A[ k] [ j] )
{
A[ i] [ j] = A[ i] [ k] + A[ k] [ j] ;
path[ i] [ j] = k;
}
}
}
}
Dispath( A,path,G.n ) ;
}
void Ppath( int path[ ] [ MaxVertexNum] ,int i,int j)
{
int k;
k= path[ i] [ j] ;
if ( k== - 1 )
{
return ;
}
Ppath( path,i,k) ;
printf ( "%d," ,k) ;
Ppath( path,k,j) ;
}
void Dispath( int A[ ] [ MaxVertexNum] ,int path[ ] [ MaxVertexNum] ,int n)
{
int i,j;
for ( i= 0 ; i< n; i++ )
{
for ( j= 0 ; j< n; j++ )
{
if ( A[ i] [ j] == INF)
{
if ( i! = j)
{
printf ( "从%d到%d没有路径\n " ,i,j) ;
}
}
else
{
printf ( " 从%d到%d=>路径长度:%d路径:" ,i,j,A[ i] [ j] ) ;
printf ( "%d," ,i) ;
Ppath( path,i,j) ;
printf ( "%d\n " ,j) ;
}
}
}
}
int main( )
{
freopen ( "input2.txt" , "r" , stdin ) ;
MGraph G;
CreateMGraph( G) ;
Floyd( G) ;
return 0 ;
}