二分图匹配匈牙利算法(DFS, BFS两种实现模板)

  3个重要结论:

最大匹配数:最大匹配的匹配边的数目

最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择

最大独立集:选取最多的点,使任意所选两点均不相连

最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

最小点覆盖数=最大匹配数

最小路径覆盖 =顶点数-最大匹配数
二分图最大独立集 = 顶点数 - 最大匹配数

//匈牙利算法,二分图匹配,DFS实现
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std;
#define maxn 100005


int vis[maxn];
int link[maxn];
vector<int>G[maxn];     //存边

int dfs(int s)
{
	for(int i=0; i<G[s].size(); i++)
	{
		int t = G[s][i];
		if(!vis[t])
		{
			vis[t] = 1;
			if(link[t] == -1 || dfs(link[t]))
			{
				link[t] = s;
				return 1;
			}
		}
	}
	return 0;
}

int max_pipei(int n)
{
	int ans = 0;
	for(int i=1; i<=n; i++)
	{
		memset(vis, 0, sizeof(vis));
		ans += dfs(i);
	}
	return ans;
}

int main()
{
	int ld, rd;     //左半边的点数, 右半边的点数
	while(~scanf("%d%d", &ld, &rd))
	{
		for(int i=0; i<maxn; i++)
			G[i].clear();
		memset(link, -1, sizeof(link));
		int m;                  //边数
		scanf("%d", &m);
		for(int i=0; i<m; i++)
		{
			int u, v;
			scanf("%d%d", &u, &v);
			//无向边
			G[u].push_back(v+ld);
			G[v+ld].push_back(u);
		}
		printf("%d\n", max_pipei(ld));
	}
	return 0;
}


//二分图匹配,匈牙利算法(BFS实现)
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
#define maxn 10005
using namespace std;

vector<int>G[maxn];                   //存边
int vis[maxn];                         //判断一个点是否在交替路中
int link[maxn];                        //存连接点
int pre[maxn];                        //存前一点
queue<int>q;

int Hungarian(int n)
{
	int ans = 0;
	memset(vis, -1, sizeof(vis));
	memset(link, -1, sizeof(link));
	memset(pre, -1, sizeof(pre));
	for(int i=1; i<=n; i++)
	{
		if(link[i]==-1)
		{
		    while (!q.empty()) q.pop();
		    pre[i] = -1;
		    bool flag = false;
			q.push(i);
			while(!q.empty() && !flag)
			{
				int u = q.front();
				for(int j=0; j<G[u].size() && !flag; j++)       //注意如果falg为真,(找到一个未匹配的点,就不必继续下去了)
				{
					int v = G[u][j];
					if(vis[v] != i)
					{
						vis[v] = i;
						q.push(link[v]);
						if(link[v]>=0)            //在已匹配点中
						{
							pre[link[v]] = u;
						}
						else                       //在未匹配点中
						{
							flag = true;
							int d = u;
							int e = v;
							while(d != -1)          //找到一个未匹配点, 不断的往回更新, 让他们重选下一个
							{
								int t = link[d];
								link[d] = e;
								link[e] = d;
								d = pre[d];
								e = t;
							}
						}
					}
				}
				q.pop();
			}
		if(link[i] != -1)
			ans ++;
		}
	}
	return ans;
}

int main()
{
	int ld, rd;                         //左半边点数, 右半边点数
	while(~scanf("%d%d", &ld, &rd))
	{
	    for(int i=0; i<maxn; i++)
            G[i].clear();
		int m;                         //边数
		scanf("%d", &m);
		for(int i=0; i<m; i++)
		{
			//编号1-ld,1-rd
			int u, v;
			scanf("%d%d", &u, &v);
			//无向图,u和v可以是同一个数
			G[u].push_back(v+ld);
			G[v+ld].push_back(u);
		}
		printf("最大匹配数是:%d\n",Hungarian(ld));
	}
	return 0;
}

HDU 2063,典型二分图求最大匹配

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值