3个重要结论:
最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立集:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。
最小点覆盖数=最大匹配数
最小路径覆盖 =顶点数-最大匹配数
二分图最大独立集 = 顶点数 - 最大匹配数
//匈牙利算法,二分图匹配,DFS实现
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std;
#define maxn 100005
int vis[maxn];
int link[maxn];
vector<int>G[maxn]; //存边
int dfs(int s)
{
for(int i=0; i<G[s].size(); i++)
{
int t = G[s][i];
if(!vis[t])
{
vis[t] = 1;
if(link[t] == -1 || dfs(link[t]))
{
link[t] = s;
return 1;
}
}
}
return 0;
}
int max_pipei(int n)
{
int ans = 0;
for(int i=1; i<=n; i++)
{
memset(vis, 0, sizeof(vis));
ans += dfs(i);
}
return ans;
}
int main()
{
int ld, rd; //左半边的点数, 右半边的点数
while(~scanf("%d%d", &ld, &rd))
{
for(int i=0; i<maxn; i++)
G[i].clear();
memset(link, -1, sizeof(link));
int m; //边数
scanf("%d", &m);
for(int i=0; i<m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
//无向边
G[u].push_back(v+ld);
G[v+ld].push_back(u);
}
printf("%d\n", max_pipei(ld));
}
return 0;
}
//二分图匹配,匈牙利算法(BFS实现)
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
#define maxn 10005
using namespace std;
vector<int>G[maxn]; //存边
int vis[maxn]; //判断一个点是否在交替路中
int link[maxn]; //存连接点
int pre[maxn]; //存前一点
queue<int>q;
int Hungarian(int n)
{
int ans = 0;
memset(vis, -1, sizeof(vis));
memset(link, -1, sizeof(link));
memset(pre, -1, sizeof(pre));
for(int i=1; i<=n; i++)
{
if(link[i]==-1)
{
while (!q.empty()) q.pop();
pre[i] = -1;
bool flag = false;
q.push(i);
while(!q.empty() && !flag)
{
int u = q.front();
for(int j=0; j<G[u].size() && !flag; j++) //注意如果falg为真,(找到一个未匹配的点,就不必继续下去了)
{
int v = G[u][j];
if(vis[v] != i)
{
vis[v] = i;
q.push(link[v]);
if(link[v]>=0) //在已匹配点中
{
pre[link[v]] = u;
}
else //在未匹配点中
{
flag = true;
int d = u;
int e = v;
while(d != -1) //找到一个未匹配点, 不断的往回更新, 让他们重选下一个
{
int t = link[d];
link[d] = e;
link[e] = d;
d = pre[d];
e = t;
}
}
}
}
q.pop();
}
if(link[i] != -1)
ans ++;
}
}
return ans;
}
int main()
{
int ld, rd; //左半边点数, 右半边点数
while(~scanf("%d%d", &ld, &rd))
{
for(int i=0; i<maxn; i++)
G[i].clear();
int m; //边数
scanf("%d", &m);
for(int i=0; i<m; i++)
{
//编号1-ld,1-rd
int u, v;
scanf("%d%d", &u, &v);
//无向图,u和v可以是同一个数
G[u].push_back(v+ld);
G[v+ld].push_back(u);
}
printf("最大匹配数是:%d\n",Hungarian(ld));
}
return 0;
}
HDU 2063,典型二分图求最大匹配