过河问题
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
在漆黑的夜里,N位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,N个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。如果各自单独过桥的话,N人所需要的时间已知;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,如何设计一个方案,让这N人尽快过桥。
-
输入
-
第一行是一个整数T(1<=T<=20)表示测试数据的组数
每组测试数据的第一行是一个整数N(1<=N<=1000)表示共有N个人要过河
每组测试数据的第二行是N个整数Si,表示此人过河所需要花时间。(0<Si<=100)
输出
- 输出所有人都过河需要用的最少时间 样例输入
-
1 4 1 2 5 10
样例输出
-
17
-
-
//这道题刚开始有点难想到 //起初我以为,2个最小的(标记为min1和min2)先过去,然后让最小的(min1)那个带灯回来,然后再让最大的2个人(max1,max2)过去 //然后再让min2回来,再带min1过去,然后min1回来,然后继续让还没过桥的最大的2个过去,依次循环下去 //样例 1 2 5 10 //(1,2)过去(耗时2),1回来(耗时1),(5,10)过去(耗时10),2回来(耗时2),(1,2)过去(耗时2),共2+1+10+2+2 = 17 //然后...提交,wa //下面再看一组数据 1 4 5 8 //如果按照上面的做法,最终结果会是4+1+8+4+4 = 21 (视为第一种方法) //然而可以这样,(1,4)过去(耗时4),1回来(耗时1),(1,5)过去(耗时5),1回来(耗时1),(1,8)过去(耗时8),共4+1+5+1+8 = 19(第二种) //通过这两组数据可以发现,需要判断要不要让min2回来 //如果让min2回来,那么让2个最大的过去的时间会是max1+min1+2*min2; //不让min2回来,那么让2个最大的过去的时间会是max1+max2+2*min1; //所以需要判断max1+min1+2*min2和max1+max2+2*min1的大小,即2*min2和min1+max2的大小 //if(2*min2>=min1+max2)则采取第二种,否则采取第一种 #include <stdio.h> #include <queue> using namespace std; priority_queue<int, vector<int>, greater<int> >q1; //存还没过桥的人,时间是小到大 priority_queue<int, vector<int>, less<int> >q2; //存还没过桥的人,时间是大到小 priority_queue<int, vector<int>, greater<int> >q3; //存已经过桥的人,时间是小到大 int main() { int T; scanf("%d", &T); while(T--) { while(!q1.empty()) q1.pop(); while(!q2.empty()) q2.pop(); while(!q3.empty()) q3.pop(); int n; scanf("%d", &n); for(int i=0; i<n; i++) { int num; scanf("%d", &num); q1.push(num); q2.push(num); } int sum = 0; //总耗时 int min1, min2, max1, max2, k=0; //先让两个耗时最少的人过去 min1 = q1.top(); q1.pop(); if(n==1) { printf("%d\n", min1); continue; } min2 = q1.top(); q1.pop(); q3.push(min1); q3.push(min2); sum += min2; while(q3.size()<n) { //只剩一个人,让min1带他过桥 if(q3.size()==n-1) { sum += q2.top() + min1; break; } max1 = q2.top(); q2.pop(); max2 = q2.top(); q2.pop(); if(2*min2>=min1+max2) { //让min1将max1和max2依次带过去 sum += max1 + max2 + 2*min1; q3.push(max1); q3.push(max2); } else { //min1回来,让max1和max2过去,min2回来,带min1一起过去 sum += max1 + 2*min2 + min1; q3.push(max1); q3.push(max2); } } printf("%d\n", sum); } return 0; }
-
第一行是一个整数T(1<=T<=20)表示测试数据的组数