图像检索哈希算法综述

本文综述了数据独立和数据依赖哈希算法,重点关注图像检索。数据独立哈希包括随机哈希、局部敏感哈希(LSH)、Learning for Hashing(如BoostMap)和结构投影。LSH保留了数据特性,而MinHash用于快速计算集合相似度。Learning for Hashing如BoostMap学习数据分布以优化哈希空间。数据依赖哈希包括无监督方法如谱哈希,它通过图拉普拉斯矩阵构建相似度,并进行PCA和离散优化。线性无监督哈希如AGH利用锚点图学习压缩编码。
摘要由CSDN通过智能技术生成

本文主要参考自:Hashing Techniques: A Survey and Taxonomy

LIANHUA CHI, IBM Research, Melbourne, Australia
XINGQUAN ZHU, Florida Atlantic University, Boca Raton, FL; Fudan University, Shanghai, China

面向数据的主要为了加速查找过程,面向加密的主要为了产生验证签名

其中,本文关注面向数据部分:

一、数据独立哈希:

没有训练过程,没有带标签的数据/信息。哈希函数都是prespecified,可以学习数据分布信息。可分四类:
随机哈希,局部敏感哈希,learning for hashing,结构投影

1.随机哈希

随机预测哈希有一个数据降维机制,可以自动把原始高维数据预测到低维空间。起初[Donald 1999]用随机的随机预测函数,一个随机预测函数需要d*lgk位来表示,d和k分别是原始数据和降维后数据的维度,导致无法存储随机选择函数,后来就开始用固定的随机预测函数,Carter and Wegman [1977]提出普遍方法,从特定函数的一个小集合中随机选哈希函数,如Shakhnarovich [2005],随机函数预测的时间复杂度由于哈希函数簇小且高度独立,可以是常量级的。

主要缺点:太不稳定,不同的哈希函数会导致完全不同的编码,可能两个元素差一位,但哈希码可能被预测成不同的类别。在降维时也丢失了很多特性。随之产生了局部敏感哈希。

2.局部敏感哈希

LSH的一大特点是原始空间相近的两个数据点哈希编码也相似。LSH的随机预测哈希函数是:

w是图像点的一个随机超平面,b是随机截距,每个数据点的标签由超平面w决定,LSH的哈希函数满足

基于这个哈希函数,对于任意两个点x,y,LSH满足

LSH不仅在哈希码中保留了数据特性,也保证相似数据点的碰撞可能性。

不足:效率低,且要保证精度需要很长的编码,low recall。

对于超平面,为了给出最优的编码位数,NPQ基于可适应的可学习的阈值分配,VBQ提供数据驱动的不一致位分配。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值