这道题可以用两种解法来做,分别是Set和Two Pointers。这里推荐第二种做法,因为它的空间复杂度是O(1)。
- Set
/** * Definition for singly-linked list. * class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { public ListNode detectCycle(ListNode head) { Set<ListNode> visited = new HashSet<>(); ListNode curr = head; while(curr != null){ if(visited.contains(curr)){ return curr; } visited.add(curr); curr = curr.next; } return null; } }
- Two Pointers
解题思路:
这类链表题目一般都是使用双指针法解决的,例如寻找距离尾部第K个节点、寻找环入口、寻找公共尾部入口等。
算法流程:
双指针第一次相遇: 设两指针 fast,slow 指向链表头部 head,fast 每轮走 2 步,slow 每轮走 1 步;第一种结果: fast 指针走过链表末端,说明链表无环,直接返回 null;
TIPS: 若有环,两指针一定会相遇。因为每走 1 轮,fast 与 slow 的间距 +1,fast 终会追上 slow;
第二种结果: 当fast == slow时, 两指针在环中 第一次相遇 。下面分析此时fast 与 slow走过的 步数关系 :设链表共有 a+b 个节点,其中链表头部到链表入口 有 a 个节点(不计链表入口节点), 链表环 有 b 个节点(这里需要注意,a 和 b 是未知数,例如图解上链表 a=4 , b=5);设两指针分别走了 f,s 步,则有:
fast 走的步数是slow步数的 2 倍,即 f = 2s;(解析: fast 每轮走 2 步)
fast 比 slow多走了 n 个环的长度,即 f = s + nb;( 解析: 双指针都走过 a 步,然后在环内绕圈直到重合,重合时 fast 比 slow 多走了环的长度整数倍 );
以上两式相减得:f = 2nb,s = nb,即fast和slow 指针分别走了 2n,n 个 环的周长 (注意: n 是未知数,不同链表的情况不同)。
目前情况分析:如果让指针从链表头部一直向前走并统计步数k,那么所有 走到链表入口节点时的步数 是:k=a+nb(先走 a 步到入口节点,之后每绕 1 圈环( b 步)都会再次到入口节点)。
而目前,slow 指针走过的步数为 nb 步。因此,我们只要想办法让 slow 再走 a 步停下来,就可以到环的入口。
但是我们不知道 a 的值,该怎么办?依然是使用双指针法。我们构建一个指针,此指针需要有以下性质:此指针和slow 一起向前走 a 步后,两者在入口节点重合。那么从哪里走到入口节点需要 a 步?答案是链表头部head。
双指针第二次相遇:slow指针 位置不变 ,将fast指针重新 指向链表头部节点 ;slow和fast同时每轮向前走 1 步;
TIPS:此时 f = 0,s = nb ;
当 fast 指针走到f = a 步时,slow 指针走到步s = a+nb,此时两指针重合,并同时指向链表环入口 。
返回slow指针指向的节点。复杂度分析:
时间复杂度 O(N) :第二次相遇中,慢指针须走步数 a < a + b;第一次相遇中,慢指针须走步数 a + b - x < a + b,其中 x 为双指针重合点与环入口距离;因此总体为线性复杂度;
空间复杂度 O(1) :双指针使用常数大小的额外空间。/** * Definition for singly-linked list. * class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { public ListNode detectCycle(ListNode head) { Set<ListNode> visited = new HashSet<>(); ListNode curr = head; while(curr != null){ if(visited.contains(curr)){ return curr; } visited.add(curr); curr = curr.next; } return null; } }
reference link: https://leetcode-cn.com/problems/linked-list-cycle-ii/solution/linked-list-cycle-ii-kuai-man-zhi-zhen-shuang-zhi-/