一、什么是数据结构?
数据结构是一门研究非数值计算的程序设计问题中的操作对象,一级他们之间的关系和操作等相关问题的学科。
程序设计=数据结构+算法
数据结构:逻辑结构和物理结构
逻辑结构:数据对象中数据元素之间的相互关系
物理结构:计算机中的存储形式
四大逻辑结果
1、集合结构
2、线性结构
3、树形结构
4、图形结构
数据元素的存储形式有两种:顺序存储和链式存储
顺序存储结构:把数据元素存放在地址连续的存储单元里,其数据间的逻辑关系和物理关系是一致的
链式存储结构:是把数据元素存放在任意的存储单元里,这组存储单元可以收连续的,也可以是不连续的
二、算法
解决特定问题求解步骤的描述,在计算机中表现为指令的优先序列,并且每条指令表示一个或多个操作
(一)算法五个基本特征:
输入、输出、有穷性、确定性、可行性
1、输入:算法具有零个或多个输入
2、输出:至少有一个或者多个输出
3、有穷性:在执行有限的步骤之后,自动结束而不会出现无限循环,并且每一个步骤在可接受的时间内完成
4、确定性:
- 算法的每一个步骤都有确定的含义,不会出现二义性
- 算法在一定条件下,只有一条执行路径,相同的输入只能有唯一的输出结果
- 算法的每个步骤都应该被精准定义无歧义
5、可行性:算法的每一步都必须是可行的,能够通过有限次完成
(二)算法设计的要求
正确性:算法至少应该具有输入、输出和加工处理无歧义性、能正确反应问题的需求、能够得到问题的正确答案。
可读性:便于阅读、理解和交流。
健壮性:当输入数据不合法时,算法也能作出相关处理,而不是产生异常、崩溃或莫名其妙的结果。
三、时间复杂度
- 用常数1取代运行时间中的所有加法常数
- 在修改后的运行次数函数中,只保留最高阶
- 如果最高阶项存在且不是1,则去除这个项相乘的常数
- 得到结果就是O阶
线性阶
一般含有非嵌套循环设计线性阶,线性阶就是随着问题规模n的扩大,对应计算次数呈现直线增长。
对数阶
平均运行时间和运行时间
平均运行时间是期望的运行时间
运行时间是最坏情况的运行时间
时间和空间
可以用时间换取空间【占内存小,但是耗时】
可以用空间换取时间【占内存,但是运行效率高】
重点:算法的空间复杂度
算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度计算公式
其中n为问题的规模
f(n)为语句关于n所占用的存储空间的函数
通常使用时间复杂度来形容运行时间需求,空间复杂度指空间需求
求复杂度一般指时间复杂度。