自定义博客皮肤

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

GAN及其变体CGAN、WGAN

生成式对抗网络GAN(无监督) GAN由Goodfellow在2014年提出,启发自博弈论中的二人零和博弈。由一个生成模型G和一个判别模型D组成。生成模型捕捉样本数据的分布,判别模型是一个二分类器,判别输入的数据是真实数据还是生成的数据。G和D一般都是非线性映射函数,例如多层感知器、卷积神经...

2019-01-14 15:54:49

阅读数 267

评论数 0

RabbitMQ初识

1 MQ MQ (Message Queqe)我们可以理解为消息队列,队列我们可以理解为管道。以管道的方式做消息传递。 应用场景: 1.其实我们在双11的时候,当我们凌晨大量的秒杀和抢购商品,然后去结算的时候,就会发现,界面会提醒我们,让我们稍等,以及一些友好的图片文字提醒。而不是像前几年的...

2018-08-22 09:59:38

阅读数 32

评论数 0

PostgreSQL初识

1、PostgreSQL 1.1 简介 PostgreSQL是一个功能强大的开源对象关系数据库管理系统(ORDBMS)。 用于安全地存储数据; 支持最佳做法,并允许在处理请求时检索它们。 PostgreSQL(也称为Post-gress-Q-L)由PostgreSQL全球开发集团(全球志愿者...

2018-08-17 17:05:16

阅读数 50

评论数 0

无监督学习——聚类

1、基本概念理解 无监督学习——通过无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。 聚类——将数据集中的样本划分为若干个不相干的子集,每个子集称为一个“簇”,即类别。需要说明的是,聚类之前并不知道数据是属于哪一类的,我们就是要通过聚类来找出有哪些类别并把这些数据归...

2018-07-30 22:28:19

阅读数 1303

评论数 0

分类模型和回归模型

分类: 概念:对于分类问题,监督学习从数据中学习一个分类模型或者分类决策函数,称为分类器。分类器对新的输入预测其属于哪一类别,称为分类。 优化过程:找到最优决策面 输出:离散值,如0/1,yes/no 评价指标:一般是精确率,即给定测试数据集,分类器能正确分类的样本数占总样本数的比。 模...

2018-07-30 15:44:03

阅读数 798

评论数 0

生成模型和判别模型

基础概念 1、监督学习的任务就是学习一个模型,然后根据这个学习好的模型,给定输入预测相应的输出。该模型的一般表达为Y=F(x)(F为输入到输出的映射关系),或者为条件概率P(y|x)(给定x求y的发生概率) 2、监督学习方法分为生成方法和判别方法,学习到的模型对应为生成模型和判别模型 生成方...

2018-07-30 12:05:12

阅读数 48

评论数 0

Linux学习打卡第五天之shell命令

今天领头羊发了邮件过来,要学习下分析网络包的过程,里面有个.sh文件,不是很懂,今天开始了解下。 一些特殊符号 'string' 单引号,用于保持引号内所有字符的字面值,即引号里面是什么就是什么,例如 echo '\\' 输出\\ \"string\" ...

2018-07-06 17:30:43

阅读数 83

评论数 0

Linux学习打卡第四天之makefile实验

首先需要弄明白程序编译执行的大致过程: 预处理阶段 词法和语法分析阶段 编译阶段 :对.c文件进行编译,首先编译成汇编语句,再编译成跟CPU相关的二进制码,最后生成的是目标文件(后缀名为.obj) 链接阶段 :将各个目标文件中的各段代码进行绝对地址定位,生成跟特定平台相关的可执行文件(后缀名为...

2018-07-05 15:50:49

阅读数 78

评论数 0

C语言之文件相关操作

fopen(); 作用:以指定方式打开文件 FILE *fopen( const char *path;//待打开的文件路径 const char *mode;//打开方式,有如下: //r:以只读方式打开 //w:只写文件,若文件存在则将内...

2018-07-04 10:21:12

阅读数 66

评论数 0

TCP/IP协议

1、 概念 TCP/IP是传输控制协议和网络协议的简称,它定义了电子设备如何连入因特网,以及数据如何在它们之间传输的标准。 TCP/IP不是一个协议,而是一个协议簇的统称,里面包括了IP协议、ICMP协议、TCP协议、以及http、ftp、pop3协议等。网络中的计算机都采用这套协议簇进行互联...

2018-06-27 16:00:31

阅读数 31

评论数 0

网络抓包工具安装

1、wireshark安装 https://www.linuxidc.com/Linux/2016-08/134526.htm https://jingyan.baidu.com/article/c74d60009d992f0f6a595de6.html https://blog.csdn....

2018-06-27 11:59:13

阅读数 42

评论数 0

源代码管理工具——svn,git

1、工具介绍 https://blog.csdn.net/zhhelnice/article/details/52385285 https://blog.csdn.net/jiary5201314/article/details/51460009 2、git和github的概念区别 htt...

2018-06-27 10:44:58

阅读数 54

评论数 0

Linux学习打卡第三天

1、基本概念及操作 1.1 Linux常用快捷键 [Tab]:命令补全,也可以补全目录、命令参数等 [Ctrl+c]:终止当前程序 [Ctrl+d]:键盘输入结束或退出终端 [Ctrl+s]:暂停当前程序,暂停后按下任意键恢复运行 [Ctrl+z]:将当前程序放到后台运行,恢复到前台为命令...

2018-06-22 16:59:10

阅读数 72

评论数 0

Linux学习打卡第二天

1. 文件内容查阅 cat 含义:concatenate,从第一行开始显示文件内容 格式:cat [-AbEnTv] 文件路径 -A:显示文件的完整信息,包括特殊字符 -b:列出行号,空白行不标行号 -n:列出行号,空白行也有行号 -T:将[tab]按键以 ^I 显示出...

2018-06-21 17:49:00

阅读数 162

评论数 0

Linux学习打卡第一天

第一天学习了以下知识点 1、Linux常用命令: 操作系统:Unbantu 16.4 1.1 目录相关操作 cd pwd ls -l -s mkdir:创建目录 $ cd ./Documents $ mkdir /tmp //创建文件夹 $ mkdir test ...

2018-06-21 09:57:49

阅读数 284

评论数 0

集群更新tensorflow问题记录

问题描述: 网上下载了一个tensorflow代码,要求tensorflow版本是1.4以后的,我集群上的版本是1.2,所以要更新。 做法1: 1、我把目录切换到anaconda下:cd anaconda 2、用pip命令更新tensorflow到最新版本:pip install –u...

2018-06-13 10:28:59

阅读数 85

评论数 0

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation

今天介绍一篇文章,FCN和DenseNet的超强结合体,2017CVPR,一起来欣赏下吧! 文章地址:https://arxiv.org/abs/1611.09326 1、 FC-DenseNet提出背景 FCN:FCN是首个在传统CNN的基础上解决像素级语义分割问题的网络。同过加入上采样层...

2018-06-11 22:04:46

阅读数 400

评论数 0

全卷积神经网络FCN

卷积神经网络(CNN)介绍 传统CNN的强大之处就在于它的多层结构能自动学习特征,并且可以学习到多个层次的特征:较浅的卷积层感知域较小,学习到一些局部特征;较深的卷积层感知域较大,能够学习到更加抽象的特征。这些抽象特征对物体的方向、大小、位置等敏感性更低,从而有助于识别性能的提高。 缺点:抽象...

2018-06-05 15:24:18

阅读数 3558

评论数 1

自编码器及其相关模型

简介 自编码器是一种无监督的神经网络模型,其核心作用是学习到输入数据的深层表示。主要应用在两方面:一是特征提取;二是非线性降维,用于高维数据的可视化,与流行学习关系密切。 本节主要介绍几种常见的自编码器及其变种网络。 1、自编码器(AutoEncoder,AE) 20世纪80年代...

2018-06-04 17:27:11

阅读数 1930

评论数 0

卷积神经网络-由简单到复杂

matlab中BP神经网络训练误差很大的原因; 1、没归一化 2、没初始化 3、数据结构问题 4、学习函数选择不当 5、隐藏层设置不当 6、数据太少,摆动不大 卷积神经网络的参数调节: 一般说来,提高网络泛化能力的主要方法有:...

2018-06-04 17:17:40

阅读数 145

评论数 0

提示
确定要删除当前文章?
取消 删除