刷题 数组

1.数组中出现次数超过一半的数字(剑指offer 39)

题目描述:
数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}。由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2。如果不存在则输出0。

解题思路:
1.采用直观遍历数组的解法O(N) 当要求不修改数组时采用此方法

  1. 首选假如有一个数字的次数超过数组长度的一半,则其出现的次数比其他所有元素次数和要多。故记录两个值:一个是遍历数组的元素数字,一个是次数。
  2. 当数字改变时,次数减一,当次数减为0时,将数字改变为当前指针指向的元素并初始化次数为1,一直到数组遍历结束,得到一个次数大于等一的元素数字。
  3. 最终对该数字检验是否出现次数大于一半,再次遍历数组统计出现次数与数组长度比较即可。

2.当没有要求不能修改数组时可以采用快速排序partition的思路。数组某数字出现次数超过一半,则已排序数组的中值一定为该数字。将每次返回的元素下标与数组中间下标比较,当相等时,即找到该数字。 参考下一题

class Solution {
public:
    int MoreThanHalfNum_Solution(vector<int> numbers) {
        if(numbers.size()==0)
            return 0;
        int n=numbers.size();
        int res,times=0;
        for(int i=0;i<n;i++)
        {
            if(times==0)
            {
                res=numbers[i];
                times=1;
            }
            else if(res==numbers[i])
                times++;
            else 
                times--;
        }
        int max_len=0;
        for(int i=0;i<n;i++)
        {
            if(numbers[i]==res)
                max_len++;
        }
        if(2*max_len>n)
             return res;
        return 0;
    }
};

2.数组中的第K个最大元素(leetcode 215)

题目描述:
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
解题思路:
采用快速排序partition思路,数组第K个最大的元素,将每次返回的元素下标与(数组元素个数-k)比较,缩短搜索范围。
当partition返回的下标等于(数组元素个数-k)时,即找到该元素。
最优时间复杂度O(N) 最坏O(N^2)
空间复杂度O(1)

class Solution {
public:
    int partition(vector<int>& nums,int start,int end)
    {
        if(start>end)
            return -1;
        int tmp=start;
        int i=start;
        int j=start+1;
        for(;j<=end;j++)
        {
            if(nums[j]<nums[tmp])
            {
                swap(nums[i+1],nums[j]);
                ++i;
            }
        }
        swap(nums[tmp],nums[i]);
        return i;
    }
    
    
    int findKthLargest(vector<int>& nums, int k) {
        if(nums.size()==0)
            return -1;
        int start=0;
        int end=nums.size()-1;
        int index=partition(nums,start,end);
        while(index!=(nums.size()-k) && start<=end)
        {
            if(index>(nums.size()-k))
            {
                end=index-1;
                index=partition(nums,start,end);
            }
            else
            {
                start=index+1;
                index=partition(nums,start,end);
            }
        }
        if(index==(nums.size()-k))
           return nums[index];
        
        return -1;

    }
};

3.最小的k个数(剑指offer 40)

题目描述:
输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4。

思路1:
同上partation思路。

class Solution {
public:
    int partition(vector<int>& nums,int start,int end)
    {
        int tmp=start;
        int i=start;
        int j=start+1;
        for(;j<=end;j++)
        {
            if(nums[j]<nums[tmp])
            {
                swap(nums[i+1],nums[j]);
                ++i;
            }
        }
        swap(nums[tmp],nums[i]);
        return i;
    }
    vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
        if(input.size()==0 || k<0 ||k>input.size())
            return {};
        vector<int> res;
        int start=0;
        int end=input.size()-1;
        int index=partition(input,start,end);
        while(index!=k && start<=end)
        {
            if(index>k)
            {
                end=index-1;
                index=partition(input,start,end);
            }
            else
            {
                start=index+1;
                index=partition(input,start,end);
            }
        }
        for(int i=0;i<k;i++)
        {
            res.push_back(input[i]);
        }
        return res;
    }
};

思路2
利用红黑树的查找特性 O(logK) multiset实现 总时间复杂度O(Nlongk)

  • 此解法适合海量数据的输入(由于内存有限 不可能将所有数据都存入内存 而此方法只要保证内存足够容纳k即可而无需考虑n的大小)
  • 且此解法不改变数组的结构
  1. 当multiset容器内部元素个数小于k时,向里面insert数据,直到数据个数为k。C++ multiset可以通过greater、less指定排序方式,实现最大堆、最小堆功能,在头文件#include< functional > 中。
  2. 采用greater方式排序后,数据由大到小排列,最大值在容器头部。每遍历一个数据,就与头部最大值比较,若小于该最大值,就该头部数据去除,并将遍历到的数据insert容器,直到最后遍历结束,容器中保存最小的k个数。
class Solution {
public:
	vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
		if (input.size() == 0 || k<0 || k > input.size())
			return{};
		multiset<int,greater<int>> k_nums;
		for (int i = 0; i<input.size(); i++)
		{
			if (k_nums.size()<k)
			{
				k_nums.insert(input[i]);
			}
			else{
				multiset<int>::iterator iter = k_nums.begin();
				if (input[i]<*iter)
				{
					k_nums.erase(iter);
					k_nums.insert(input[i]);
				}
			}
		}
		vector<int> res(k);
		multiset<int>::iterator iter = k_nums.begin();
		for (int i = 0; i<k; i++)
		{
			cout << *iter << endl;
			res[i] = *iter;
			iter++;
		}
		return res;
	}
};

4.最长连续序列(leetcode 128)

题目描述:给定一个未排序的整数数组,找出最长连续序列的长度。要求算法的时间复杂度为 O(n)。
在这里插入图片描述
解题思路:

  • 方法一:排序解法。 时间复杂度O(NlogN)
  1. 将nums排序后。
  2. 依次遍历,若上一个值与当前值相等,继续遍历;若不相等,如果二值连续,计数值加一,否则跳出循环比较是否大于记录的最大序列值并更新。
class Solution {
public:
    int longestConsecutive(vector<int>& nums) {
        if(nums.size()==0)
            return 0;
        sort(nums.begin(),nums.end());
        int longest=1;
        int current=1;
        for(int i=1;i<nums.size();i++)
        {
            if(nums[i]!=nums[i-1])
            {
                if(nums[i]-1==nums[i-1])
                    ++current;
                else
                {
                    longest= current>longest? current : longest;
                    current=1;
                }
            }
        }
        return max(longest,current);
        
    }
};
  • 方法二:哈希表。
  1. 采用unorder_set记录所有nums中的值。
  2. 遍历数组,如果比当前值小于1的值不在数组中,搜索从该值开始是否有连续序列,while循环,采用count计数值来实现。
  3. 更新最长连续序列的值。
class Solution {
public:
    int longestConsecutive(vector<int>& nums) {
        if(nums.size()==0)
            return 0;
        unordered_set<int> st(nums.begin(),nums.end());
        int res=1;
        for(auto c : nums)
        {
            if(st.find(c-1)==st.end())
            {
                int num=c+1;
                while(st.count(num))
                {
                    num++;
                }
                 res=max(num-c,res);    
            }  
        }

        return res;
    }
};

5.只出现一次的数字(leetcode 136)

在这里插入图片描述
解法一:哈希表,删除操作O(1) ,故总时间复杂度O(N)

  1. 将出现的数字插入哈希表
  2. 出现重复的删除
  3. 最终剩下只出现一次的
class Solution {
public:
    int singleNumber(vector<int>& nums) {
        unordered_set<int> st;
        int ans;
        for(auto i : nums){
            if(st.count(i))  st.erase(i);
            else    st.insert(i);
        }
        for(auto j : st)  ans = j;
        return ans;
    }
};

解法二:排序+双指针 sort O(nlog(n)) 遍历 O(n) 总时间复杂度O(nlog(n))
排序后,移动双指针每次+2,若相邻两个数不相等则返回第一个数。

class Solution {
public:
    int singleNumber(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        for(int i = 0, j = 1; j < nums.size(); i += 2, j += 2){
            if(nums[i] != nums[j])  return nums[i];
        }
        return nums[nums.size() - 1];
    }
};

解法三: 异或 时间复杂度O(n)
任何数与自己相异或均为0,且存在可加性 (a+b)^(a+b)=(a ^a) ^(b ^ b) =0

class Solution {
public:
    int singleNumber(vector<int>& nums) {
        int res=nums[0];
        for(int i=1;i<nums.size();i++)
        {
            res^=nums[i];
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值