文章目录
1.数组中出现次数超过一半的数字(剑指offer 39)
题目描述:
数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}。由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2。如果不存在则输出0。
解题思路:
1.采用直观遍历数组的解法O(N) 当要求不修改数组时采用此方法
- 首选假如有一个数字的次数超过数组长度的一半,则其出现的次数比其他所有元素次数和要多。故记录两个值:一个是遍历数组的元素数字,一个是次数。
- 当数字改变时,次数减一,当次数减为0时,将数字改变为当前指针指向的元素并初始化次数为1,一直到数组遍历结束,得到一个次数大于等一的元素数字。
- 最终对该数字检验是否出现次数大于一半,再次遍历数组统计出现次数与数组长度比较即可。
2.当没有要求不能修改数组时可以采用快速排序partition的思路。数组某数字出现次数超过一半,则已排序数组的中值一定为该数字。将每次返回的元素下标与数组中间下标比较,当相等时,即找到该数字。 参考下一题
class Solution {
public:
int MoreThanHalfNum_Solution(vector<int> numbers) {
if(numbers.size()==0)
return 0;
int n=numbers.size();
int res,times=0;
for(int i=0;i<n;i++)
{
if(times==0)
{
res=numbers[i];
times=1;
}
else if(res==numbers[i])
times++;
else
times--;
}
int max_len=0;
for(int i=0;i<n;i++)
{
if(numbers[i]==res)
max_len++;
}
if(2*max_len>n)
return res;
return 0;
}
};
2.数组中的第K个最大元素(leetcode 215)
题目描述:
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
解题思路:
采用快速排序partition思路,数组第K个最大的元素,将每次返回的元素下标与(数组元素个数-k)比较,缩短搜索范围。
当partition返回的下标等于(数组元素个数-k)时,即找到该元素。
最优时间复杂度O(N) 最坏O(N^2)
空间复杂度O(1)
class Solution {
public:
int partition(vector<int>& nums,int start,int end)
{
if(start>end)
return -1;
int tmp=start;
int i=start;
int j=start+1;
for(;j<=end;j++)
{
if(nums[j]<nums[tmp])
{
swap(nums[i+1],nums[j]);
++i;
}
}
swap(nums[tmp],nums[i]);
return i;
}
int findKthLargest(vector<int>& nums, int k) {
if(nums.size()==0)
return -1;
int start=0;
int end=nums.size()-1;
int index=partition(nums,start,end);
while(index!=(nums.size()-k) && start<=end)
{
if(index>(nums.size()-k))
{
end=index-1;
index=partition(nums,start,end);
}
else
{
start=index+1;
index=partition(nums,start,end);
}
}
if(index==(nums.size()-k))
return nums[index];
return -1;
}
};
3.最小的k个数(剑指offer 40)
题目描述:
输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4。
思路1:
同上partation思路。
class Solution {
public:
int partition(vector<int>& nums,int start,int end)
{
int tmp=start;
int i=start;
int j=start+1;
for(;j<=end;j++)
{
if(nums[j]<nums[tmp])
{
swap(nums[i+1],nums[j]);
++i;
}
}
swap(nums[tmp],nums[i]);
return i;
}
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
if(input.size()==0 || k<0 ||k>input.size())
return {};
vector<int> res;
int start=0;
int end=input.size()-1;
int index=partition(input,start,end);
while(index!=k && start<=end)
{
if(index>k)
{
end=index-1;
index=partition(input,start,end);
}
else
{
start=index+1;
index=partition(input,start,end);
}
}
for(int i=0;i<k;i++)
{
res.push_back(input[i]);
}
return res;
}
};
思路2
利用红黑树的查找特性 O(logK) multiset实现 总时间复杂度O(Nlongk)
- 此解法适合海量数据的输入(由于内存有限 不可能将所有数据都存入内存 而此方法只要保证内存足够容纳k即可而无需考虑n的大小)
- 且此解法不改变数组的结构
- 当multiset容器内部元素个数小于k时,向里面insert数据,直到数据个数为k。C++ multiset可以通过greater、less指定排序方式,实现最大堆、最小堆功能,在头文件#include< functional > 中。
- 采用greater方式排序后,数据由大到小排列,最大值在容器头部。每遍历一个数据,就与头部最大值比较,若小于该最大值,就该头部数据去除,并将遍历到的数据insert容器,直到最后遍历结束,容器中保存最小的k个数。
class Solution {
public:
vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
if (input.size() == 0 || k<0 || k > input.size())
return{};
multiset<int,greater<int>> k_nums;
for (int i = 0; i<input.size(); i++)
{
if (k_nums.size()<k)
{
k_nums.insert(input[i]);
}
else{
multiset<int>::iterator iter = k_nums.begin();
if (input[i]<*iter)
{
k_nums.erase(iter);
k_nums.insert(input[i]);
}
}
}
vector<int> res(k);
multiset<int>::iterator iter = k_nums.begin();
for (int i = 0; i<k; i++)
{
cout << *iter << endl;
res[i] = *iter;
iter++;
}
return res;
}
};
4.最长连续序列(leetcode 128)
题目描述:给定一个未排序的整数数组,找出最长连续序列的长度。要求算法的时间复杂度为 O(n)。
解题思路:
- 方法一:排序解法。 时间复杂度O(NlogN)
- 将nums排序后。
- 依次遍历,若上一个值与当前值相等,继续遍历;若不相等,如果二值连续,计数值加一,否则跳出循环比较是否大于记录的最大序列值并更新。
class Solution {
public:
int longestConsecutive(vector<int>& nums) {
if(nums.size()==0)
return 0;
sort(nums.begin(),nums.end());
int longest=1;
int current=1;
for(int i=1;i<nums.size();i++)
{
if(nums[i]!=nums[i-1])
{
if(nums[i]-1==nums[i-1])
++current;
else
{
longest= current>longest? current : longest;
current=1;
}
}
}
return max(longest,current);
}
};
- 方法二:哈希表。
- 采用unorder_set记录所有nums中的值。
- 遍历数组,如果比当前值小于1的值不在数组中,搜索从该值开始是否有连续序列,while循环,采用count计数值来实现。
- 更新最长连续序列的值。
class Solution {
public:
int longestConsecutive(vector<int>& nums) {
if(nums.size()==0)
return 0;
unordered_set<int> st(nums.begin(),nums.end());
int res=1;
for(auto c : nums)
{
if(st.find(c-1)==st.end())
{
int num=c+1;
while(st.count(num))
{
num++;
}
res=max(num-c,res);
}
}
return res;
}
};
5.只出现一次的数字(leetcode 136)
解法一:哈希表,删除操作O(1) ,故总时间复杂度O(N)
- 将出现的数字插入哈希表
- 出现重复的删除
- 最终剩下只出现一次的
class Solution {
public:
int singleNumber(vector<int>& nums) {
unordered_set<int> st;
int ans;
for(auto i : nums){
if(st.count(i)) st.erase(i);
else st.insert(i);
}
for(auto j : st) ans = j;
return ans;
}
};
解法二:排序+双指针 sort O(nlog(n)) 遍历 O(n) 总时间复杂度O(nlog(n))
排序后,移动双指针每次+2,若相邻两个数不相等则返回第一个数。
class Solution {
public:
int singleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
for(int i = 0, j = 1; j < nums.size(); i += 2, j += 2){
if(nums[i] != nums[j]) return nums[i];
}
return nums[nums.size() - 1];
}
};
解法三: 异或 时间复杂度O(n)
任何数与自己相异或均为0,且存在可加性 (a+b)^(a+b)=(a ^a) ^(b ^ b) =0
class Solution {
public:
int singleNumber(vector<int>& nums) {
int res=nums[0];
for(int i=1;i<nums.size();i++)
{
res^=nums[i];
}
return res;
}
};