世界幸福指数报告可视化
数据集描述
Kaggle提供的数据集包括2015、2016、2017的报告。每年的报告的形式为CSV文件:2015.csv, 2016.csv。由于2017报告的格式与之前两年的不同,本次项目中只对2015和2016年的报告进行分析。
数据详细情况
- Country: 国家名称,字符串
- Region: 所属区域,字符串
- Happiness Rank: 排名,整型
- Happiness Score: 幸福指数(0~10),浮点型。由以下6个因素计算得出。
- 1. Economy (GDP per Capita): 人均GDP,浮点型
- 2. Family: 社会支援(social support),浮点型
- 3. Health (Life Expectancy): 预期健康寿命,浮点型
- 4. Freedom: 人生抉择自由,浮点型
- 5. Trust (Government Corruption): 免于贪腐自由,浮点型
- 6. Generosity: 慷慨,浮点型
数据可视化框架
项目步骤
- 查看所有数据信息
- 区域内的平均幸福指数可视化
- 区域内的人均GDP分部、社会支援信息,预期健康寿命信息,人生抉择自由信息,免于贪腐自由信息,慷慨信息,可视化
- 全世界区域内国家数量分布情况
- 所有国家在不同区域内的分部
- 排名前/后5个国家的幸福指数情况
- 三年内幸福指数变化情况
项目实现
- 引入所有包,读入数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
dataset_path = "./data/"
data_2015 = pd.read_csv(dataset_path+'2015.csv')
data_2016 = pd.read_csv(dataset_path+'2016.csv')
- 查看数据信息
def data_info():
print(data_2015.info())
print(data_2015.describe())
- 区域内的平均幸福指数可视化
def country_score_of_every_region(