两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 的那 两个 整数,并返回它们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
你可以按任意顺序返回答案。
示例 1:
输入:nums = [2,7,11,15], target = 9
输出:[0,1]
解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。
示例 2:
输入:nums = [3,2,4], target = 6
输出:[1,2]
示例 3:
输入:nums = [3,3], target = 6
输出:[0,1]
暴力匹配
class Solution {
public int[] twoSum(int[] nums, int target) {
int length = nums.length;
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
if (nums[i] + nums[j] == target) {
return new int[]{i, j};
}
}
}
return new int[0];
}
}
哈希表
class Solution {
public int[] twoSum(int[] nums, int target) {
int length = nums.length;
Map<Integer, Integer> hashtable = new HashMap<Integer, Integer>();
for (int i = 0; i < length; ++i) {
if (hashtable.containsKey(target - nums[i])) {
return new int[]{hashtable.get(target - nums[i]), i};
}
hashtable.put(nums[i], i);
}
return new int[0];
}
}
两数之和(输入有序数组)
给定一个已按照 升序排列 的整数数组 numbers ,请你从数组中找出两个数满足相加之和等于目标数 target 。
函数应该以长度为 2 的整数数组的形式返回这两个数的下标值。numbers 的下标 从 1 开始计数 ,所以答案数组应当满足 1 <= answer[0] < answer[1] <= numbers.length 。
你可以假设每个输入只对应唯一的答案,而且你不可以重复使用相同的元素。
示例 1:
输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。
示例 2:
输入:numbers = [2,3,4], target = 6
输出:[1,3]
示例 3:
输入:numbers = [-1,0], target = -1
输出:[1,2]
二分查找
class Solution {
public int[] twoSum(int[] numbers, int target) {
int len = numbers.length;
for (int i = 0; i < len; ++i) {
int left = i + 1, right = len - 1;
while (left <= right) {
int mid = (right - left) / 2 + left;
if (numbers[mid] == target - numbers[i])
return new int[]{i + 1, mid + 1};
else if (numbers[mid] > target - numbers[i])
right = mid - 1;
else
left = mid + 1;
}
}
return new int[]{-1, -1};
}
}
双指针
class Solution {
public int[] twoSum(int[] numbers, int target) {
int left = 0, right = numbers.length - 1;
while (left < right) {
int sum = numbers[left] + numbers[right];
if (sum == target)
return new int[]{left + 1, right + 1};
else if (sum > target)
right--;
else
left++;
}
return new int[]{-1, -1};
}
}
两数之和 IV - 输入 BST
给定一个二叉搜索树和一个目标结果,如果 BST 中存在两个元素且它们的和等于给定的目标结果,则返回 true。
案例 1:
输入:
Target = 9
输出: True
案例 2:
输入:
Target = 28
输出: False
中序遍历+双指针
class Solution {
public boolean findTarget(TreeNode root, int k) {
List<Integer> list = new ArrayList<>();
inorder(list, root);
if (list.size() < 2)
return false;
int i = 0, j = list.size() - 1;
while (i < j) {
int sum = list.get(i) + list.get(j);
if (sum == k)
return true;
if (sum < k)
i++;
else
j--;
}
return false;
}
private void inorder(List<Integer> list, TreeNode root) {
if (root == null)
return;
inorder(list, root.left);
list.add(root.val);
inorder(list, root.right);
}
}
递归查找
class Solution {
private TreeNode root;
public boolean findTarget(TreeNode root, int k) {
this.root = root;
return recursion(root, k);
}
private boolean recursion(TreeNode node, int k) {
if (node == null)
return false;
int val = k - node.val;
if (val == node.val)
return recursion(node.left, k) | recursion(node.right, k);
else if (findSingleNum(root, val))
return true;
else
return recursion(node.left, k) | recursion(node.right, k);
}
private boolean findSingleNum(TreeNode node, int k) {
if (node == null)
return false;
if (node.val == k)
return true;
else if (node.val < k)
return findSingleNum(node.right, k);
else
return findSingleNum(node.left, k);
}
}
三数之和
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例 2:
输入:nums = []
输出:[]
示例 3:
输入:nums = [0]
输出:[]
双指针法
排序后通过双指针查找,注意去重。
class Solution {
public List<List<Integer>> threeSum(int[] nums) {
int length = nums.length;
List<List<Integer>> results = new ArrayList<List<Integer>>();
if (length < 3) {
return results;
}
Arrays.sort(nums);
for (int i = 0; i < length; ++i) {
if (nums[i] > 0) {
break;
}
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int j = i + 1;
int k = length - 1;
while (j < k) {
int sum = nums[i] + nums[j] + nums[k];
if (sum == 0) {
results.add(Arrays.asList(nums[i], nums[j],nums[k]));
while (j < k && nums[k] == nums[--k]);
while (j < k && nums[j] == nums[++j]);
} else if (sum > 0) {
while (j < k && nums[k] == nums[--k]);
} else {
while (j < k && nums[j] == nums[++j]);
}
}
}
return results;
}
}
最接近的三数之和
给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
示例:
输入:nums = [-1,2,1,-4], target = 1
输出:2
解释:与 target 最接近的和是 2 (-1 + 2 + 1 = 2) 。
排序+双指针
class Solution {
public int threeSumClosest(int[] nums, int target) {
int length = nums.length;
Arrays.sort(nums);
int result = 100000;
for (int i = 0; i < length; ++i) {
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int j = i + 1;
int k = length - 1;
while (j < k) {
int sum = nums[i] + nums[j] + nums[k];
if (sum == target) {
return target;
}
if (Math.abs(result - target) > Math.abs(sum - target)) {
result = sum;
}
if (sum > target) {
while (j < k && nums[k] == nums[--k]);
} else {
while (j < k && nums[j] == nums[++j]);
}
}
}
return result;
}
}
四数之和
给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。
注意:
答案中不可以包含重复的四元组。
示例:
给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。
满足要求的四元组集合为:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
双指针法
四数之和的双指针解法是两层for循环nums[i] + nums[j]为确定值,依然是循环内有 p 和 q 作为双指针,找出nums[i] + nums[j] + nums[p] + nums[q] == target的情况
class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
List<List<Integer>> results= new ArrayList<>();
int len = nums.length;
if (len < 4) {
return results;
}
Arrays.sort(nums);
for (int i = 0; i < len - 3; i++) {
if ((i > 0 && nums[i] == nums[i - 1]) || (nums[i] + nums[len-3] + nums[len-2] + nums[len-1] < target)) {
continue;
}
if (nums[i] + nums[i + 1] + nums[i + 2] + nums[i + 3] > target) {
break;
}
for (int j = i + 1; j < len - 2; j++) {
if ((j > i + 1 && nums[j] == nums[j - 1]) || (nums[i] + nums[j] + nums[len-2] + nums[len-1] < target)) {
continue;
}
if (nums[i] + nums[j] + nums[j + 1] + nums[j + 2] > target) {
break;
}
int p = j + 1, q = len - 1;
while (p < q) {
int sum = nums[i] + nums[j] + nums[p] + nums[q];
if (sum == target) {
results.add(Arrays.asList(nums[i], nums[j], nums[p], nums[q]));
while (p < q && nums[q] == nums[--q]);
while (p < q && nums[p] == nums[++p]);
} else if (sum > target) {
int count = 0;
while (p < q && nums[q] == nums[--q]) {
count += 1;
}
System.out.println(count);
} else {
int count = 0;
while (p < q && nums[p] == nums[++p]) {
count += 1;
}
System.out.println(count);
}
}
}
}
return results;
}
}