01背包问题-空间复杂度o(V)

本文介绍了如何将01背包问题的空间复杂度从O(N*V)优化到O(V),通过理解递推公式并按容量V倒序计算,确保在推导f[v]时能获取到所需的前i-1层结果。提供了具体实例和代码演示这一过程,最终展示优化后的空间效率。
摘要由CSDN通过智能技术生成
**题目**

有N件物品和一个容量为V的背包。第i件物品的所需容量是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
现在我们来看第i件物品:
---如果选择将第i件物品放入,那么在放置前i-1件物品的时候应该空出v-c[i]的容量,此时方程为f[i-1][v-c[i]]+w[i]
---如果选择不将第i件物品放入,那么此时的最大价值前第i-1件放入容量为v的背包获得的最大价值决定,此时方程为f[i-1][v]
综上所述,得出f[i][v]

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

推荐大家走一遍实例,看一下下方结果输出的表格,表格懂了,算法就懂了
假设当前有五件商品(重量,价值)(5,12),(4,3),(7,10),(2,3),(6,6)
背包容量为15
解决代码如下所示
时间复杂度以及空间复杂度均为o(N×V)

#coding=utf-8
class Solution():
    def zero_one(self,goods,max_V):
        f = [[
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值