**题目**
有N件物品和一个容量为V的背包。第i件物品的所需容量是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
现在我们来看第i件物品:
---如果选择将第i件物品放入,那么在放置前i-1件物品的时候应该空出v-c[i]的容量,此时方程为f[i-1][v-c[i]]+w[i]
---如果选择不将第i件物品放入,那么此时的最大价值前第i-1件放入容量为v的背包获得的最大价值决定,此时方程为f[i-1][v]
综上所述,得出f[i][v]
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
推荐大家走一遍实例,看一下下方结果输出的表格,表格懂了,算法就懂了
假设当前有五件商品(重量,价值)(5,12),(4,3),(7,10),(2,3),(6,6)
背包容量为15
解决代码如下所示
时间复杂度以及空间复杂度均为o(N×V)
#coding=utf-8
class Solution():
def zero_one(self,goods,max_V):
f = [[