深度学习笔记

本文介绍了深度学习所需的数学基础知识,重点讲解了线性代数中的标量、向量、张量和矩阵,包括它们的定义、转置和乘法操作。特别强调了矩阵乘法的性质,如分配律、结合律,并阐述了单位矩阵和逆矩阵的概念。此外,还讨论了矩阵与向量的点积及其在求解线性系统的应用。
摘要由CSDN通过智能技术生成

深度学习笔记

一、数学基础

1、线性代数

1.1 标量、向量、张量、矩阵
  • 标量 (scalar):一个标量就是一个单独的数。比如,在定义实数标量时,通常说 ‘‘让 s ∈ R 表示一条线的斜率’’;在定义自然数标量时,通常说‘‘让 n ∈ N 表示元素的数目’’。
  • 向量 (vector):一个向量是一列数。这些数是有序排列的。通过次序中的索引,可以确定每个单独的数。
  • 张量 (tensor):在某些情况下,会讨论不只两维坐标的数组。一般地,一组数组中的元素分布在若干维坐标的规则网格中,我们将其称之为张量。使用这种字体 A 来表示张量 “A’’。张量 A 中坐标为 (i, j, k) 的元素记作 Ai,j,k
  • 矩阵 (matrix):矩阵是二维数组,其中的每一个元素被两个索引而非一个所确定。通常会赋予矩阵粗体的大写变量名称,比如 A。如果一个实数矩阵高度为 m,宽度为 n,通常说 A ∈ Rm×n。用符号":"表示一行或一列, Ai,: 表示 A 中垂直坐标 i 上的一横排元素。这也被称为 A 的第 i行 (row)。同样地,A:,i 表示 A 的第 i列 (column)。当需要明确表示矩阵中的元素时,将它们写在用方括号包围起来的数组中:
# 第一个索引代表行数,第二个索引代表列数
[A1,1 A1,2 
 A2,1 A2,2]
  • 转置 (transpose) :矩阵的重要操作之一。矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线被称为主对角线 (main diagonal)。矩阵 A 的转置表示为 A,定义如下:
    在这里插入图片描述
1、向量可以看作是只有一列的矩阵。对应地,向量的转置可以看作是只有一行的 矩阵。有时,我们将向量表示成行矩阵的转置,写在行中,然后使用转置将其变为 标准的列向量,比如 x = [x1, x2, x3]^T
2、标量可以看作是只有一个元素的矩阵。因此,标量的转置等于它本身,a = a⊤。只要矩阵的形状一样,我们可以把两个矩阵相加。两个矩阵相加是指对应位置的元素相加,比如 C = A + B,其中 Ci,j = Ai,j + Bi,j。
3、标量和矩阵相乘,或是和矩阵相加时,我们将其与矩阵的每个元素相乘或相加,比如 D = a · B + c,其中 Di,j = a · Bi,j + c。
4、深度学习中,也使用一些不那么常规的符号。允许矩阵和向量相加,产生另一个矩阵:C = A + b,其中 Ci,j = Ai,j + bj。换言之,向量 b 和矩阵 A 的每一行相加。这个速记方法使我们无需在加法操作前定义复制向量 b 到矩阵的每一行。这种隐式地复制向量 b 到很多位置的方式,被称为广播 (broadcasting)

1.2 矩阵和向量相乘

矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵 A 和 B 的矩阵乘积 (matrix product) 是第三个矩阵 C。为了使乘法定义良好,矩阵 A 的列数必须和矩阵 B 的行数相等。如果矩阵 A 的形状是 m × n,矩阵 B 的形状是 n × p,那么矩阵 C 的形
状是 m × p。矩阵乘积可以作用于两个或多个并在一起的矩阵,公式:C = AB

需要注意的是,两个矩阵的标准乘积不是指两个矩阵中对应元素的乘积。但这样的矩阵操作确实是存在的,称为元素对应乘积 (element-wise product) 表示为 A ⊙ B

两个相同维数的向量 x 和 y 的点积 (dot product) 可看作是矩阵乘积 xy。我们可以把矩阵乘积 C = AB 中计算 Ci,j 的步骤看作是 A 的第 i 行和 B 的第 j 列之间的点积。

矩阵满足分配律和结合律,不满足交换律,以下罗列常见公式:

  • 分配律 A(B + C) = AB + AC
  • 结合律 A(BC) = (AB)C
  • 注意不满足交换律 AB = BA (极少数可能满足在此忽略)
  • 两个向量的点积满足交换律 xy = yx
  • 矩阵乘积的转置有以下形式 (AB) = BA

综上得出一个公式 Ax = b
其中 A ∈ Rm×n 是一个已知矩阵,b 是一个已知向量,x 是一个要求解的未知向量。向量 x 的每一个元素 xi 都是未知的。矩阵 A 的每一行和 b 中对应的元素构成一个约束。该公式可重写为
A1,:x = b1
A2,:x = b2
· · ·
Am,:x = bm
或者,更明确地,写作
A1,1x1 + A1,2x2 + · · · A1,nxn = b1
· · ·

1.3 单位矩阵和逆矩阵

为了描述矩阵逆,首先定义 单位矩阵(identity matrix)的概念。任意向量和单位矩阵相乘,都不会改变。保持 n 维向量不变的单位矩阵记作 In。形式上,In ∈ Rn×n

  • x ∈ Rn, Inx = x

单位矩阵的结构很简单:所有沿主对角线的元素都是 1,而所有其他位置的元素都是0。如下表示为I3

[ 1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值