【建模先锋】
码龄155天
关注
提问 私信
  • 博客:93,582
    93,582
    总访问量
  • 85
    原创
  • 12,399
    排名
  • 1,565
    粉丝
  • 32
    铁粉
  • 学习成就

个人简介:关注工重号【建模先锋】,获取代码

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2024-06-12
博客描述:
分享信号处理、时序预测、深度学习干货
查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    539
    当月
    106
个人成就
  • 获得2,206次点赞
  • 内容获得2次评论
  • 获得1,545次收藏
  • 代码片获得528次分享
创作历程
  • 85篇
    2024年
成就勋章
TA的专栏
  • 信号处理
    36篇
  • 时间序列预测
    36篇
  • 数学建模莫
    1篇
  • 电能质量扰动信号
    14篇
TA的推广
兴趣领域 设置
  • 人工智能
    人工智能深度学习
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

轴承故障全家桶更新 | 基于VGG16的时频图像分类算法

凯斯西储大学(CWRU)轴承故障诊代码 全家桶更新,之前购买的同学请及时更新下载
原创
发布博客 3 小时前 ·
671 阅读 ·
17 点赞 ·
0 评论 ·
12 收藏

超强预测算法:XGBoost预测模型

XGBoost是一种强大的机器学习算法,适用于预测任务。它通过梯度提升树的方式有效地处理复杂数据,并在许多领域中取得了令人瞩目的成果。本文基于前期介绍的风速数据(文末附数据集),利用XGBoost模型分别对多变量序列、单序列的数据进行建模,来实现精准预测。
原创
发布博客 3 小时前 ·
608 阅读 ·
14 点赞 ·
0 评论 ·
7 收藏

注意力魔改 | 超强轴承故障诊断模型!

本文基于凯斯西储大学(CWRU)轴承数据,进行快速傅里叶变换(FFT)和变分模态分解VMD的数据预处理,最后通过Python实现基于VGGSENet-BiGRUGlobalAttention的时空特征融合模型对故障数据的分类。
原创
发布博客 前天 23:14 ·
872 阅读 ·
29 点赞 ·
0 评论 ·
21 收藏

风速预测(七)VMD-CNN-BiLSTM预测模型

本文基于前期介绍的风速数据(文末附数据集),先经过VMD分解,然后通过数据预处理,制作和加载数据集与标签,最后通过Pytorch实现VMD-CNN-BiLSTM模型对风速数据的预测,以提高时间序列数据的预测性能。
原创
发布博客 前天 23:08 ·
426 阅读 ·
17 点赞 ·
0 评论 ·
16 收藏

Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现CNN-TCN-Attention模型对故障数据的分类。
原创
发布博客 2024.11.06 ·
1098 阅读 ·
31 点赞 ·
0 评论 ·
17 收藏

多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型

本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-Transformer-BiLSTM多特征变量序列预测模型,以提高时间序列数据的预测性能。
原创
发布博客 2024.11.06 ·
1002 阅读 ·
13 点赞 ·
0 评论 ·
29 收藏

多特征变量序列预测(九)基于麻雀优化算法的CEEMDAN-SSA-BiGRU-Attention预测模型

本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-BiGRU-Attention多特征变量序列预测模型,以提高时间序列数据的预测性能。
原创
发布博客 2024.11.05 ·
1196 阅读 ·
25 点赞 ·
0 评论 ·
10 收藏

基于 GADF+Swin-CNN-GAM 的高创新轴承故障诊断模型

基于格拉姆矩阵GADF+Swin Transformer窗口注意力和CNN-GAM全局注意力的轴承故障诊断模型!
原创
发布博客 2024.11.05 ·
1140 阅读 ·
29 点赞 ·
0 评论 ·
19 收藏

独家原创 | SCI 1区 高创新轴承故障诊断模型!

本文基于凯斯西储大学(CWRU)轴承数据,进行快速傅里叶变换(FFT)和变分模态分解VMD的数据预处理,最后通过Python实现基于多级注意力的cnn轻量级网络架构模型对故障数据的分类。
原创
发布博客 2024.11.04 ·
1029 阅读 ·
41 点赞 ·
0 评论 ·
28 收藏

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型

本文基于前期介绍的风速数据(文末附数据集),介绍一种基于VMD+CEEMDAN二次分解的BiLSTM-Attention预测模型,以提高时间序列数据的预测性能。
原创
发布博客 2024.11.04 ·
1156 阅读 ·
15 点赞 ·
0 评论 ·
14 收藏

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现TCN-CNN模型对故障数据的分类。
原创
发布博客 2024.11.03 ·
702 阅读 ·
36 点赞 ·
0 评论 ·
15 收藏

多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型

本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-BiLSTM多特征变量序列预测模型,以提高时间序列数据的预测性能。
原创
发布博客 2024.11.03 ·
1170 阅读 ·
30 点赞 ·
0 评论 ·
25 收藏

轴承故障全家桶更新 | 基于时频图像的分类算法

注意: 凯斯西储大学(CWRU)轴承故障诊代码 全家桶更新,之前购买的同学请及时更新下载
原创
发布博客 2024.11.01 ·
1235 阅读 ·
39 点赞 ·
0 评论 ·
12 收藏

多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型

本文基于前期介绍的风速数据(文末附数据集),介绍一种多特征变量序列预测模型CEEMDAN + Transformer-BiLSTM,以提高时间序列数据的预测性能。
原创
发布博客 2024.11.01 ·
1145 阅读 ·
37 点赞 ·
0 评论 ·
12 收藏

Python轴承故障诊断 (16)高创新故障识别模型(二)

本文基于凯斯西储大学(CWRU)轴承数据,进行快速傅里叶变换(FFT)和变分模态分解VMD的数据预处理,最后通过Python实现基于交叉注意力CNN-Transformer-CrossAttention的时空特征融合模型对故障数据的分类。
原创
发布博客 2024.10.31 ·
1080 阅读 ·
34 点赞 ·
0 评论 ·
28 收藏

超强预测模型:二次分解-组合预测

Informer是一种基于自注意力机制的序列预测模型,专门用于时间序列预测任务,在时间序列预测领域取得了显著的性能
原创
发布博客 2024.10.31 ·
683 阅读 ·
16 点赞 ·
0 评论 ·
30 收藏

基于 GADF+Swin-CNN-GAM 的高创新扰动信号识别模型!

基于格拉姆矩阵GADF+Swin Transformer窗口注意力和CNN-GAM全局注意力的电能质量扰动信号识别模型!
原创
发布博客 2024.10.30 ·
769 阅读 ·
18 点赞 ·
0 评论 ·
12 收藏

轴承寿命预测 (Python 预测模型全家桶)

本期我们基于 PHM2012 挑战赛滚动轴承全寿命数据,推出基于 Python 的轴承寿命预测模型合集:LSTM、CNN、GRU、TCN、Transformer、CNN-LSTM、CNN-Transformer、Transformer-BiLSTM等系列预测模型全家桶,并提供丰富的实验和解说
原创
发布博客 2024.10.30 ·
1251 阅读 ·
37 点赞 ·
0 评论 ·
10 收藏

Python电能质量扰动信号分类(七)基于CNN-TCN-Attention的扰动信号识别模型

本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现CNN-TCN-Attention模型对电能质量扰动信号的分类。
原创
发布博客 2024.10.29 ·
1049 阅读 ·
17 点赞 ·
0 评论 ·
24 收藏

半天入门!锂电池剩余寿命预测(Python)

本期我们推出基于 Python 的锂电池剩余寿命预测合集:基于LSTM、CNN、BiGRU、TCN、Transformer、CNN-Transformer、Transformer-BiLSTM等系列预测模型全家桶,并提供丰富的实验
原创
发布博客 2024.10.29 ·
808 阅读 ·
30 点赞 ·
0 评论 ·
17 收藏
加载更多