分享信号处理、时序预测、深度学习干货

  • 博客(212)
  • 收藏
  • 关注

原创 故障诊断模型更新:基于EMD分解+CNN-GRU并行分类模型的详细教程!

本期主要更新基于 Python 的凯斯西储大学(CWRU)轴承数据+EMD-CNN-GRU并行分类模型教程!

2025-12-22 19:18:21 857

原创 基于CNN-SENet+SHAP分析的回归预测模型!

本文基于 Kaggle平台—洪水数据集的回归预测(文末附数据集),更新基于CNN-SENet的预测模型,并提供结合SHAP理论开展模型可解释性分析!

2025-12-20 21:51:20 973

原创 故障诊断模型讲解:基于1D-CNN、2D-CNN分类模型的详细教程!

本期主要更新基于 Python 的凯斯西储大学(CWRU)轴承数据+CNN模型教程!我们新增了数据集和预处理的详细教程、jupyter 代码教程、pycharm 代码教程,进行了比较规范的基于 Pycharm 编辑器进行实现的代码,并且优化了训练过程的代码。同时补充了关于CNN模型及参数的讲解视频,方便同学们入门学习!请同学们更新后按照视频教程进行运行!

2025-12-19 22:44:41 1188

原创 精品数据分享 | 锂电池数据集(八)CALCE电池数据集-圆柱形电池

精品数据分享 | 锂电池数据集(八)CALCE电池数据集-圆柱形电池

2025-12-17 22:09:46 848

原创 创新首发!基于VMD+WDCNN-SENet的故障诊断模型

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现VMD-WDCNN-SENet模型对故障数据的分类。

2025-12-16 20:17:52 805

原创 特征提取+概率神经网络 PNN 的轴承信号故障诊断模型

本期结合振动信号的多尺度特征提取与PNN的概率分类能力,提出一种“多特征融合—PNN轴承故障诊断模型”。该方法从时间域、频率域与统计复杂性三个层面提取数十种特征量,用以表征轴承故障信号的动态特性,并通过标准化与特征融合构建高维特征向量输入PNN进行训练与识别。通过在CWRU轴承数据集上的实验验证,本文所提方法在分类精度与稳定性方面均取得优异性能。

2025-12-15 19:31:23 1175

原创 多源信息融合!基于特征信号VMD分解+CNN-Transformer的故障诊断模型!

继上期推出的基于数据层融合+经典卷积网络的故障诊断合集,本期继续更新:数据层融合+ CNN-LSTM-Transformer的特征层融合的故障诊断模型。

2025-12-14 22:40:29 718

原创 最强更新!西储大学(CWRU)轴承数据集保姆级教程!

本期主要更新基于 Python 的凯斯西储大学(CWRU)轴承数据解读与分类处理!我们新增了数据集和预处理的详细教程、jupyter 代码教程、pycharm 代码教程,进行了比较规范的基于 Pycharm 编辑器进行实现的代码,并且优化了训练过程的代码,请同学们更新后按照视频教程进行运行!

2025-12-13 22:01:41 1234

原创 精品数据分享 | 锂电池数据集(七)同济大学电池数据集

本期继续分享一篇Nature communicationTop论文公开锂离子电池数据,划重点-数据集开源,代码开源!!!

2025-12-11 20:59:23 1906

原创 多源信息融合:数据层融合+特征层融合的故障诊断模型!

继上期推出的基于数据层融合+经典卷积网络的故障诊断合集,本期继续更新:数据层融合+ CNN-LSTM-Transformer的特征层融合的故障诊断模型。

2025-12-10 22:16:01 989

原创 独家首发!基于VMD滚动分解+Transformer-LSTM的并行预测模型

随着时间序列预测在能源、金融、气象等领域的广泛应用,如何提高预测的准确性和稳定性成为研究热点。传统深度学习模型如LSTM虽然擅长捕捉时间序列中的长短期依赖,但面对复杂的非线性信号时效果可能有限。另一方面,Transformer凭借其强大的自注意力机制,在捕捉全局依赖关系上表现优异,但缺乏对局部时序特征的天然敏感性。为了弥补单一模型的不足,本期创新性地提出了一种基于变分模态分解(VMD)滚动分解与Transformer-LSTM并行融合的预测模型框架。该方法利用VMD对时间序列信号进行多模态分解,有效剥离信号

2025-12-08 20:33:01 888

原创 精品数据分享 | 锂电池数据集(六)基于深度迁移学习的锂离子电池实时个性化健康状态预测

本期继续分享一篇 一区TOP 论文:基于深度迁移学习的锂离子电池实时个性化健康状态预测,划重点-数据集开源,代码开源!

2025-12-07 23:11:12 1011

原创 高效对抗噪声!基于深度残差收缩网络(DRSN)的轴承故障诊断模型

本期基于凯斯西储大学(CWRU)轴承数据集,结合深度残差收缩网络(Deep Residual Shrinkage Networks, DRSN)进行轴承故障分类研究。通过引入残差收缩模块,有效抑制噪声和无关信息,提升模型对关键特征的敏感性。基于PyTorch框架,实现了一种1D卷积DRSN模型,评估了其对CWRU数据集不同故障的分类性能。实验结果表明,所提模型在准确率、鲁棒性均优于普通残差网络,验证了深度残差收缩机制在轴承故障诊断中的有效性。

2025-12-04 23:56:30 968

原创 高创新!基于ICEEMDAN+MSCNN-BiGRU-Attention并行预测模型

本期针对电力变压器油温运行数据,提出基于改进完备集合经验模态分解(ICEEMDAN)与多尺度卷积神经网络(MSCNN)结合注意力机制的双向门控循环单元(BiGRU)模型,对多特征时序数据进行高精度预测。模型通过GlobalAttention机制强化特征加权,提升了对序列关键时域信息的感知能力,有效捕捉复杂运行环境下油温变化规律。

2025-12-03 21:54:28 808

原创 基于Python的智能故障诊断系统 | SmartDiag AI (基础版)V1.0 正式发布!

SmartDiag AI 智能故障诊断系统是一款面向教学、科研与工业三层用户的智能化诊断平台,基于 Python + PyQt + PyTorch + 信号处理算法开发。系统以“数据驱动 + 知识融合 + 智能决策”为核心理念,实现从信号采集、特征提取、时频分析、深度学习建模到智能诊断的全流程自动化。

2025-12-02 20:47:21 458

原创 精品数据分享 | 锂电池数据集(五)麻省理工-斯坦福-丰田研究中心电池数据集

本期继续分享来自 Nature Energy 论文的锂电池公开数据集,划重点-数据集开源,代码开源!!!

2025-12-01 19:14:20 1335

原创 独家创新!基于Informer-BiGRUGATT-CrossAttention的预测模型

针对风电功率预测中的长时间依赖与多尺度时空特征建模难点,本期提出一种创新的多模型融合架构——Informer-BiGRUGATT-CrossAttention模型。该模型结合了Informer的高效长序列处理能力与双向门控循环单元(BiGRU)及全局注意力机制(Global Attention)的时序依赖捕获优势,采用交叉注意力机制进行时空特征深度融合。并实现了复杂时间序列的多层次建模,为高精度预测任务提供了新的技术路径。

2025-11-27 22:06:07 1026

原创 创新首发!基于CNN-BiLSTM-KAN模型的滚动轴承剩余使用寿命预测

滚动轴承作为机械设备的关键零部件,其剩余使用寿命(Remaining Useful Life, RUL)预测对于设备健康管理与故障预防具有重要意义。针对轴承振动信号的复杂非线性动态特性,本期提出了一种集成卷积神经网络(CNN)、双向长短时记忆网络(BiLSTM)与KAN网络的混合预测模型。

2025-11-26 21:52:38 913

原创 精品数据分享 | 锂电池数据集(四)PINN+锂离子电池退化稳定性建模和预测

本期继续分享一篇 Nature communication 论文:物理信息神经网络在锂离子电池退化稳定建模和预测中的应用,划重点-数据集开源,代码开源!!!

2025-11-25 16:52:51 941

原创 论文复现!基于SAM-BiGRU网络的锂电池RUL预测

本期基于美国马里兰大学先进生命周期工程研究中心(CALCE)锂电池实验数据,复现了论文《基于SAM-BiGRU网络的锂电池RUL预测》中提出的模型及对比实验。通过对该先进深度学习模型的深入剖析和实验验证,旨在为后续锂电池健康管理系统(Battery Health Management, BHM)研究提供可借鉴的方法路径和数据支持,具有显著的学习和参考价值。

2025-11-24 19:07:42 1215

原创 基于多尺度卷积神经网络(MSCNN-1D)的轴承信号故障诊断模型

针对传统诊断方法对信号特征提取依赖强且准确率有限的问题,本期基于凯斯西储大学(CWRU)轴承数据集,实现基于 Python-Pytorch 框架多尺度卷积神经网络的1维信号处理模型——MSCNN-1D,完成轴承振动信号的高效准确诊断。并更新在轴承故障诊断全家桶中,请同学们更新后按照视频教程进行运行学习!

2025-11-23 22:34:06 843

原创 精品数据分享 | 锂电池数据集(三)西安交通大学(XJTU)电池数据集

本期继续分享西安交通大学电池公开数据集,划重点-数据集开源,代码开源!!!

2025-11-22 16:27:32 1213

原创 独家创新!基于ICEEMDAN+SHAP可解释性分析的锂电池剩余寿命预测高创新模型!

随着锂电池在电动汽车、储能系统等领域的广泛应用,实现对锂电池性能退化及寿命的准确预测成为保障系统安全和经济运行的关键。针对锂电池运行数据通常具有非平稳、多尺度、多变量且存在噪声的特点,本文提出了一种融合信号预处理与深度并行网络架构的创新预测模型——基于ICEEMDAN+Transformer-BiGRUGlobal-Attention并行的锂电池剩余寿命预测模型。并提供结合SHAP理论开展模型可解释性分析,实现准确且透明的电池寿命评估。

2025-11-21 19:42:20 743

原创 创新首发!齿轮箱故障诊断:基于MTF+Swin-Informer的多模态创新模型

本期基于东南大学齿轮箱故障数据集,提出一种结合马尔科夫转移场(Markov Transition Field, MTF)与融合SwinTransformer和Informer的多模态故障诊断创新模型。创新性地解决了齿轮箱故障信号诊断中的信息表达与特征挖掘难题,实现了高效、准确且鲁棒的故障诊断性能。此方法为机械故障诊断领域提供了一条全新的多模态融合思路,拓展了深度学习在工业智能维护中的应用边界。

2025-11-20 22:56:30 1488

原创 精品数据分享 | 锂电池数据集(二)Nature子刊论文公开锂离子电池数据

本期继续分享一篇Nature communicationTop论文公开锂离子电池数据,划重点-数据集开源,代码开源!!!

2025-11-19 19:31:22 1135

原创 基于Informer-SENet的光伏电站发电功率预测对比合集!6组对比预测模型,毕业论文、小论文直接写!

本期基于某光伏电站发电功率数据集,推出一组Informer-SENet预测对比模型合集。包括'LSTM', 'Transformer-encoder', 'Informer', 'Informer-encoder', 'Informer-SENet', 'Informer-encoder-SENet'等6组模型对比实验

2025-11-18 22:35:41 1091

原创 基于密集连接的DenseNet故障诊断模型:实现高鲁棒性的深度故障诊断

本期基于凯斯西储大学(CWRU)轴承数据集,实现基 Python-Pytorch 框架的 DenseNet 网络的故障诊断算法流程实现。并更新在轴承故障诊断全家桶中,请同学们更新后按照视频教程进行运行学习!

2025-11-17 20:02:23 774

原创 精品数据分享 | 锂电池数据集(一)新能源汽车大规模锂离子电池数据集

随着新能源汽车的迅猛发展,锂离子电池作为其核心动力源,性能优化和寿命管理成为产业和科研的重点课题。高质量锂电池数据集的获取与共享,是推动电池技术创新和智能算法研发的关键。

2025-10-27 20:08:11 1293

原创 基于短时傅里叶变换STFT的故障诊断最强教程!搭配讲解视频

本期主要更新基于 Python 的凯斯西储大学(CWRU)轴承数据+短时傅里叶变换教程!

2025-10-21 19:33:02 1094

原创 一区直接写!CEEMDAN分解 + Informer-LSTM +XGBoost组合预测模型

本期我们推出创新性预测模型:CEEMDAN分解+Informer-LSTM+XGBoost组合预测模型。

2025-10-20 21:02:30 1039

原创 重大更新!基于WDCNN的故障诊断模型

本期基于凯斯西储大学(CWRU)轴承数据集,实现基 Python-Pytorch 框架的 WDCNN 网络的故障诊断算法流程实现。并更新在轴承故障诊断全家桶中,请同学们更新后按照视频教程进行运行学习!

2025-10-17 23:42:24 805

原创 基于VMD分解+CNN-Transformer并行的多步预测模型

本文基于前期介绍的电力变压器(文末附数据集),介绍一种基于VMD-CNN-Transformer并行网络的多特征多步预测模型。

2025-10-16 19:36:54 761

原创 多源信息融合+经典卷积网络故障诊断模型合集

本期基于东南大学轴承故障数据集(8个通道信号),进行多源信号数据的预处理讲解,并搭配经典卷积网络VGG、ResNet、深度残差收缩网络DRSN进行故障诊断的完整代码合集。(适合多传感器、多特征列的信号分类任务)

2025-10-15 22:10:10 1150

原创 连续小波变换(CWT)+时间序列预测!融合时频分析与深度学习的预测新思路

本期更新推出一种基于连续小波变换(Continuous Wavelet Transform, CWT)与VGG模型的时间序列预测方法,将传统时频分析技术与深度学习相结合,有效解决了复杂时间序列的建模难题。通过将一维时序信号转换为二维时频图像,充分利用卷积神经网络(CNN)对图像特征的强大提取能力,在保证时序局部特征的同时,显著提升模型对非平稳信号的适应性。

2025-10-14 21:52:52 1070

原创 重大更新!基于VMD+Transformer-BiLSTM-CrossAttention 故障分类模型

本文基于凯斯西储大学(CWRU)轴承数据,利用 VMD 将复杂信号分解为多个本征模态函数(IMFs),从而将原始信号转化为更简单的子信号,最后通过Python实现基于交叉注意力Transformer-BiLSTM-CrossAttention的特征融合模型对故障数据的分类。

2025-10-13 23:49:12 890

原创 继续更新!注意力机制+锂电池剩余寿命预测合集

本期我们针对马里兰大学(CALCE)的锂电池寿命数据集,新增了关于注意力机制的预测模型:BiLSTM-Attention、CNN-Attention、GRU-Attention、TCN-Attention等预测模型,并提供不同窗口值、不同划分比例等对比试验。

2025-10-12 23:24:36 1083

原创 故障诊断模型评估——你了解混淆矩阵吗?(下)

混淆矩阵的相关知识和可视化

2025-10-10 19:50:58 805

原创 PHM2012 - 基于 Python 的轴承寿命预测模型

本期我们基于 PHM2012 挑战赛滚动轴承全寿命数据,推出基于 Python 的轴承寿命预测模型合集:LSTM、CNN、GRU、TCN、Transformer、CNN-LSTM、CNN-Transformer、Transformer-BiLSTM等系列预测模型全家桶,并提供丰富的实验和解说

2025-05-14 20:14:35 1962

原创 故障诊断模型评估——混淆矩阵,如何使样本量一致(上)

本期我们围绕混淆矩阵的相关问题,推出基于凯斯西储大学(CWRU)轴承数据1DCNN分类模型进行讲解!

2025-05-13 22:39:25 1591

原创 王炸组合!STL-VMD二次分解 + Informer-LSTM 并行预测模型

传统时间序列预测模型(如ARIMA、单一LSTM)在面对多尺度特征(如长周期、短周期、噪声混杂)和非线性动态(如突变、趋势漂移)时表现受限,尤其对以下场景效果不佳:强噪声干扰:工业传感器信号中的高频噪声掩盖真实模式多季节性与趋势耦合:如电力负荷数据(日周期+周周期+节假日趋势)长期依赖与短期波动并存:如股票价格序列针对以上问题,本期提出一种基于STL+VMD二次分解,Informer-LSTM的并行预测模型,该创新模型通过二次分解与混合架构,实现了复杂时间序列的多层次建模,为高精度预测提供了

2025-05-13 22:30:26 1622

Matlab LVQ神经网络的预测-人脸朝向识别

Matlab LVQ神经网络的预测——人脸朝向识别

2025-11-26

基于天气数据的家庭能源消耗

基于天气数据的家庭能源消耗 该数据集涵盖了14个月内位于墨西哥东北部地区的一处住宅的能源消耗信息。每个数据点都以一分钟的间隔记录,并在免费许可下,利用OpenWeather提供的天气数据丰富了与能源相关的指标。变量描述概述如下: 日期 主动功率 当前的 电压 无功功率 设备电源 power_factor 主要(分类天气条件) 描述(详细的分类天气条件) 临时 feels_like 温度分钟 temp_max 压力 湿度 速度(风速) deg(风力) temp_t+1(第二天的温度预报) feels_like_t+1(预测第二天的感觉) 该数据集提供了对家庭能源动态的全面洞察,再加上气象影响,为随时间推移的能源消费模式提供了细致入微的视角。

2025-11-26

Matlab LVQ神经网络的分类-乳腺肿瘤诊断

Matlab LVQ神经网络的分类——乳腺肿瘤诊断

2025-11-26

Matlab 基于MIV的神经网络变量筛选-基于BP神经网络的变量筛选

Matlab 基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选

2025-11-26

小时风速数据集 数据集分享

小时风速数据集 数据集分享

2025-11-25

Matlab Q learning & SARSA 代码实现

Matlab Q learning & SARSA 代码实现

2025-11-25

Matlab Policy iteration & value iteration 代码实现

Matlab Policy iteration & value iteration 代码实现

2025-11-25

Matlab DBSCAN模型 代码实现

Matlab DBSCAN模型 代码实现

2025-11-25

十个不同地点生成的合成天气数据

天气数据 该数据集包含为十个不同地点生成的合成天气数据,包括纽约、洛杉矶、芝加哥和。数据包括温度、湿度、降水和风速等信息,每个参数生成100万个数据点。

2025-11-24

维斯塔斯V100-变桨-动力-风速

维斯塔斯V100-变桨-动力-风速 这些数据来自维斯塔斯V100-2MW风力涡轮机。它安装在卡伦堡的Loegtved,GPS坐标是谷歌地图。数据为10分钟数据。 处理SCADA数据和风力涡轮机,我想激励其他人利用这些数据。虽然有许多可用的数据源,但其中很大一部分来自旧的涡轮机控制器,许多数据集无法公开访问。然而,该数据集来自配备负载控制和叶片负载传感器的现代涡轮机。

2025-11-24

Matlab Gaussian mixture model 代码实现

Matlab Gaussian mixture model 代码实现

2025-11-24

Matlab Apriori 代码实现

Matlab Apriori 代码实现

2025-11-24

Matlab K-Medoids 代码实现

Matlab K-Medoids 代码实现

2025-11-24

气象数据集 数据集分享 气象

气象数据集 从天气网站提取天气数据。 “雨林奇观”天气数据集中各列的描述: 最高温度:此列表示在特定时间段内雨林奇观位置记录的最高温度。温度通常以摄氏度或华氏度为单位测量,表示在此期间达到的最高值。 最低温度:此列表示特定时间段内雨林奇观位置记录的最低温度。与最高温度类似,它以摄氏度或华氏度为单位进行测量,并指示在此期间记录的最低值。 湿度:湿度栏提供了雨林奇观位置空气中存在的水蒸气量的信息。它通常以百分比表示,代表相对湿度。 降水量:此列表示指定时间段内雨林奇观位置记录的降雨量或降雪量。它通常以毫米或英寸为单位进行测量,代表总累积降水量。 风速:风速列表示雨林奇观位置的风速。它通常以公里/小时(km/h)或英里/小时(mph)为单位进行测量。 风向:此栏提供了热带雨林奇观位置风向的指南针方向。它使用主方向(例如,北、南、东、西)或度数(例如,0°表示北,90°表示东)来指示风向。 大气压力:大气压力栏表示雨林奇观位置的气压。它通常以百帕(hPa)或英寸汞柱(inHg)为单位进行测量。 沙尘暴频率:本栏可能与沙尘暴或多尘天气的频率有关

2025-11-23

纽约市出租车之旅-每小时天气数据

纽约市出租车之旅-每小时天气数据 纽约市出租车行程持续时间挑战的每小时天气数据 以下是纽约市出租车行程持续时间挑战赛的一些详细天气数据。我注意到许多竞争者使用每日天气数据,并认为由于给出了pickup_datetime,因此可以通过纽约市(默认的KNYC站)的每小时数据来改进ML。github上的python代码可以为任何城市返回相同的数据 Wundergrounds API提供JSON格式的每小时天气数据,但我认为大多数人只需要csv格式的完整数据集。i代表英制,m代表公制,因此差值以返回值的相对单位表示(例如华氏度与摄氏度)。 请注意,对于Null或不适用(NA)变量,值将为-9999或-999。(在版本2中替换为NaN) Wundergrounds完整短语词汇表 日期时间:一天中的日期和时间(EST) tempm:温度(摄氏度) tempi:华氏温度 露点:摄氏度露点 dewpti:华氏露点 hum:湿度% wspdm:风速(kph) wspdi:风速,单位为英里/小时 阵风:阵风,单位为公里/小时 阵风:以英里/小时为单位的阵风 wdird:风向(度) wdire:风向描述 vism:以公里为单位的生动性 visi:能见度(英里) 旁压:压力单位为毫巴 pressurei:压力单位为英寸汞柱 风寒:摄氏的风寒 风辣椒:华氏风寒 热指数m:热指数摄氏度 热指数i:华氏热指数 precipm:降水量,单位为毫米 悬崖:降水量(英寸) conds:条件:查看完整的条件列表 图标 雾:布尔值 雨:布尔值 雪:布尔值 冰雹:布尔值 雷声:布尔 龙卷风:布尔

2025-11-23

首尔历史天气数据(1994-2024)

首尔历史天气数据(1994-2024) 该数据集提供了2024年1月1日以来韩国首尔每日天气状况的详细记录。该数据集经常更新,每天或每两天添加一次新数据,使其成为分析最近和历史天气模式的宝贵资源。 数据集包含以下列: 日期(datetime):记录的天气数据的日期。 最高温度(tempmax):当天记录的最高温度(°F)。 最低温度(tempmin):当天记录的最低温度(°F)。 平均温度(temp):当天记录的平均温度(°F)。 感觉像温度(feelslike):考虑湿度和风(°F)的感知温度。 露点(Dew):形成露水的温度(°F)。 湿度:空气中湿度的百分比。 降水量(precip):记录的总降水量(mm)。 雪(雪):记录的总降雪量(毫米)。 风速(Wind Speed):平均风速(km/h)。 风向(winddir):风向(度)。 海平面气压(seavelpressure):海平面的大气压(hPa)。 云量(cloudcover):云层覆盖天空的百分比。 能见度(Visibility):能见度距离(km)。 太阳辐射(Solar Radiation):表面接收到的太阳辐射(W/m²)。 紫外线指数(uvindex):衡量晒伤产生紫外线辐射强度的紫外线指数。 条件(Conditions):对天气条件的描述(例如,晴朗、部分多云)。 描述(Description):对当天天气的文字描述。

2025-11-23

Matlab EM 模型代码实现

Matlab EM 模型代码实现

2025-11-23

Matlab K-means 模型代码实现

Matlab K-means 模型代码实现

2025-11-23

Matlab Adaboost 代码实现

Matlab Adaboost 代码实现

2025-11-23

可再生能源和天气条件 数据集分享

可再生能源和天气条件 该数据集包含有关能源消耗和各种天气参数的信息,如太阳辐射、温度、压力、湿度、风速和降水。“能量增量[Wh]”列表示在特定时间段内能耗的变化,而“GHI”列测量全球水平辐照度,即水平表面接收到的太阳辐射量。该数据集还包括有关阳光存在(“isSun”)、日光长度(“dayLength”)和阳光可用时间(“sunlightTime”)的信息。“weather_type”列提供有关整体天气状况的信息,如晴朗、多云或下雨。该数据集按小时和月份组织,非常适合研究可再生能源发电与天气模式之间的关系。

2025-11-22

Matlab 神经网络高效编程技巧-基于MATLAB R2012b新版本特性的探讨

Matlab 神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨

2025-12-08

Matlab 并行运算与神经网络-基于CPUGPU的并行神经网络运算

Matlab 并行运算与神经网络——基于CPUGPU的并行神经网络运算

2025-12-08

Matlab 定制神经网络的实现-神经网络的个性化建模与仿真

Matlab 定制神经网络的实现——神经网络的个性化建模与仿真

2025-12-08

Matlab 动态神经网络时间序列预测研究-基于MATLAB的NARX实现

Matlab 动态神经网络时间序列预测研究——基于MATLAB的NARX实现

2025-12-08

Matlab 神经网络GUI的实现-基于GUI的神经网络拟合、模式识别、聚类

Matlab 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类

2025-12-03

Matlab 基于Kohonen网络的聚类算法-网络入侵聚类

Matlab 基于Kohonen网络的聚类算法——网络入侵聚类

2025-12-03

Matlab 基于灰色神经网络的预测算法研究-订单需求预测

Matlab 基于灰色神经网络的预测算法研究——订单需求预测

2025-12-03

Matlab 遗传算法优化计算-建模自变量降维

Matlab 遗传算法优化计算——建模自变量降维

2025-12-02

Matlab 粒子群优化算法的寻优算法-非线性函数极值寻优

Matlab 粒子群优化算法的寻优算法——非线性函数极值寻优

2025-12-02

Matlab 广义神经网络的聚类算法-网络入侵聚类

Matlab 广义神经网络的聚类算法——网络入侵聚类

2025-12-02

Matlab 模糊神经网络的预测算法-嘉陵江水质评价

Matlab 模糊神经网络的预测算法——嘉陵江水质评价

2025-12-01

Matlab 小波神经网络的时间序列预测-短时交通流量预测

Matlab 小波神经网络的时间序列预测——短时交通流量预测

2025-12-01

Matlab 思维进化算法优化BP神经网络-非线性函数拟合

Matlab 思维进化算法优化BP神经网络——非线性函数拟合

2025-12-01

空气质量和健康影响数据集

空气质量和健康影响数据集 该数据集包含5811条记录的空气质量及其对公共卫生影响的全面信息。它包括空气质量指数(AQI)、各种污染物浓度、天气状况和健康影响指标等变量。目标变量是健康影响类别,它根据空气质量和其他相关因素对健康影响进行分类。 目录 记录信息 记录ID 空气质量指标 天气状况 健康影响指标 目标变量:健康影响等级 记录信息 记录ID RecordID:分配给每条记录的唯一标识符(1到2392)。 空气质量指标 AQI:空气质量指数,衡量当前空气污染程度或预测污染程度。 PM10:直径小于10微米的颗粒物浓度(μg/m³)。 PM2.5:直径小于2.5微米的颗粒物浓度(μg/m³)。 NO2:二氧化氮浓度(ppb)。 SO2:二氧化硫浓度(ppb)。 O3:臭氧浓度(ppb)。 天气状况 温度:温度单位为摄氏度(°C)。 湿度:湿度百分比(%)。 风速:风速,单位为米每秒(m/s)。 健康影响指标 呼吸道病例:报告的呼吸道病例数。 心血管病例:报告的心血管病例数。 住院人数:报告的住院人数。 目标变量:健康影响等级 HealthImpactScore:一个基于空气质量和其他相关因素的整体健康影响评分,范围从0到100。 HealthImpactClass:根据健康影响评分对健康影响进行分类: 0:“非常高”(健康影响评分>=80) 1:“高”(60<=健康影响评分<80) 2:“中等”(40<=健康影响评分<60) 3:“低”(20<=健康影响评分<40) 4:“非常低”(健康影响评分<20) 结论 该数据集提供了空气质量与公共卫生之间关系的全面视图,使其成为研究、预测建模和统计分析的理想选择。 数据集使用和归因通知 此数据集由Rabie El Kharoua共享,是原始数据集,以前从未共享过。它是在CC BY 4.0许可下提供的,允许任何人以任何形式使用

2025-11-27

马德里天气数据集每小时2019-2022

马德里天气数据集每小时2019-2022 七个变量的小时天气时间序列 2019年1月至2022年1月期间,马德里莫拉塔拉兹气象站的27024个条目,包含以下变量: 温度(ºC) 风速(m/s) 风向(度) 湿度(%) 大气压(mb) 太阳辐射(W/m^2) 降水量(升/平方米)

2025-11-27

气候洞察数据集 数据集分享

气候洞察数据集 说明: 该数据集为我们气候的持续变化提供了宝贵的见解。它包括温度记录、二氧化碳排放数据和海平面上升测量的全面收集。通过关注全球趋势,它使研究人员、科学家和气候爱好者能够分析气候变化对我们星球的影响。 1访问数据集,探索各种气候变量及其时间趋势。 2进行探索性数据分析(EDA),以更深入地了解温度变化、二氧化碳排放和海平面上升。 3利用机器学习算法对未来的气候模式进行建模和预测。 4利用广泛的功能工程来提取有意义的见解。 5使用Matplotlib和Seaborn等强大的库对数据进行可视化,以进行有影响力的演示。 6使用一个热编码发现气候因素与国家/地区之间的关系。 7为气候研究做出贡献,提高认识,制定缓解策略。

2025-11-27

Matlab 基于随机森林思想的组合分类器设计-乳腺癌诊断

Matlab 基于随机森林思想的组合分类器设计——乳腺癌诊断

2025-11-27

Matlab 极限学习机在回归拟合及分类问题中的应用研究-对比实验

Matlab 极限学习机在回归拟合及分类问题中的应用研究——对比实验

2025-11-27

Matlab 决策树分类器的应用研究-乳腺癌诊断

Matlab 决策树分类器的应用研究——乳腺癌诊断

2025-11-27

特端市用电量 数据集分享

特端市用电量 日期时间:每十分钟一次。 温度:得土安市的天气温度。 湿度:Tetouan市的天气湿度。 得土安市的风速。 一般扩散流 扩散流 Tetouan市1区的电力消耗。 Tetouan市2区的电力消耗。 Tetouan市3区的电力消耗。

2025-11-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除