超强预测算法:XGBoost预测模型 XGBoost是一种强大的机器学习算法,适用于预测任务。它通过梯度提升树的方式有效地处理复杂数据,并在许多领域中取得了令人瞩目的成果。本文基于前期介绍的风速数据(文末附数据集),利用XGBoost模型分别对多变量序列、单序列的数据进行建模,来实现精准预测。
注意力魔改 | 超强轴承故障诊断模型! 本文基于凯斯西储大学(CWRU)轴承数据,进行快速傅里叶变换(FFT)和变分模态分解VMD的数据预处理,最后通过Python实现基于VGGSENet-BiGRUGlobalAttention的时空特征融合模型对故障数据的分类。
风速预测(七)VMD-CNN-BiLSTM预测模型 本文基于前期介绍的风速数据(文末附数据集),先经过VMD分解,然后通过数据预处理,制作和加载数据集与标签,最后通过Pytorch实现VMD-CNN-BiLSTM模型对风速数据的预测,以提高时间序列数据的预测性能。
Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型 本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现CNN-TCN-Attention模型对故障数据的分类。
多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型 本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-Transformer-BiLSTM多特征变量序列预测模型,以提高时间序列数据的预测性能。
多特征变量序列预测(九)基于麻雀优化算法的CEEMDAN-SSA-BiGRU-Attention预测模型 本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-BiGRU-Attention多特征变量序列预测模型,以提高时间序列数据的预测性能。
独家原创 | SCI 1区 高创新轴承故障诊断模型! 本文基于凯斯西储大学(CWRU)轴承数据,进行快速傅里叶变换(FFT)和变分模态分解VMD的数据预处理,最后通过Python实现基于多级注意力的cnn轻量级网络架构模型对故障数据的分类。
VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型 本文基于前期介绍的风速数据(文末附数据集),介绍一种基于VMD+CEEMDAN二次分解的BiLSTM-Attention预测模型,以提高时间序列数据的预测性能。
Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型 本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现TCN-CNN模型对故障数据的分类。
多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型 本文基于前期介绍的风速数据(文末附数据集),介绍一种综合应用完备集合经验模态分解CEEMDAN与基于麻雀优化算法的SSA-BiLSTM多特征变量序列预测模型,以提高时间序列数据的预测性能。
多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型 本文基于前期介绍的风速数据(文末附数据集),介绍一种多特征变量序列预测模型CEEMDAN + Transformer-BiLSTM,以提高时间序列数据的预测性能。
Python轴承故障诊断 (16)高创新故障识别模型(二) 本文基于凯斯西储大学(CWRU)轴承数据,进行快速傅里叶变换(FFT)和变分模态分解VMD的数据预处理,最后通过Python实现基于交叉注意力CNN-Transformer-CrossAttention的时空特征融合模型对故障数据的分类。
轴承寿命预测 (Python 预测模型全家桶) 本期我们基于 PHM2012 挑战赛滚动轴承全寿命数据,推出基于 Python 的轴承寿命预测模型合集:LSTM、CNN、GRU、TCN、Transformer、CNN-LSTM、CNN-Transformer、Transformer-BiLSTM等系列预测模型全家桶,并提供丰富的实验和解说
Python电能质量扰动信号分类(七)基于CNN-TCN-Attention的扰动信号识别模型 本文基于Python仿真的电能质量扰动信号,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现CNN-TCN-Attention模型对电能质量扰动信号的分类。
半天入门!锂电池剩余寿命预测(Python) 本期我们推出基于 Python 的锂电池剩余寿命预测合集:基于LSTM、CNN、BiGRU、TCN、Transformer、CNN-Transformer、Transformer-BiLSTM等系列预测模型全家桶,并提供丰富的实验