- 博客(212)
- 收藏
- 关注
原创 故障诊断模型更新:基于EMD分解+CNN-GRU并行分类模型的详细教程!
本期主要更新基于 Python 的凯斯西储大学(CWRU)轴承数据+EMD-CNN-GRU并行分类模型教程!
2025-12-22 19:18:21
857
原创 基于CNN-SENet+SHAP分析的回归预测模型!
本文基于 Kaggle平台—洪水数据集的回归预测(文末附数据集),更新基于CNN-SENet的预测模型,并提供结合SHAP理论开展模型可解释性分析!
2025-12-20 21:51:20
973
原创 故障诊断模型讲解:基于1D-CNN、2D-CNN分类模型的详细教程!
本期主要更新基于 Python 的凯斯西储大学(CWRU)轴承数据+CNN模型教程!我们新增了数据集和预处理的详细教程、jupyter 代码教程、pycharm 代码教程,进行了比较规范的基于 Pycharm 编辑器进行实现的代码,并且优化了训练过程的代码。同时补充了关于CNN模型及参数的讲解视频,方便同学们入门学习!请同学们更新后按照视频教程进行运行!
2025-12-19 22:44:41
1188
原创 创新首发!基于VMD+WDCNN-SENet的故障诊断模型
本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现VMD-WDCNN-SENet模型对故障数据的分类。
2025-12-16 20:17:52
805
原创 特征提取+概率神经网络 PNN 的轴承信号故障诊断模型
本期结合振动信号的多尺度特征提取与PNN的概率分类能力,提出一种“多特征融合—PNN轴承故障诊断模型”。该方法从时间域、频率域与统计复杂性三个层面提取数十种特征量,用以表征轴承故障信号的动态特性,并通过标准化与特征融合构建高维特征向量输入PNN进行训练与识别。通过在CWRU轴承数据集上的实验验证,本文所提方法在分类精度与稳定性方面均取得优异性能。
2025-12-15 19:31:23
1175
原创 多源信息融合!基于特征信号VMD分解+CNN-Transformer的故障诊断模型!
继上期推出的基于数据层融合+经典卷积网络的故障诊断合集,本期继续更新:数据层融合+ CNN-LSTM-Transformer的特征层融合的故障诊断模型。
2025-12-14 22:40:29
718
原创 最强更新!西储大学(CWRU)轴承数据集保姆级教程!
本期主要更新基于 Python 的凯斯西储大学(CWRU)轴承数据解读与分类处理!我们新增了数据集和预处理的详细教程、jupyter 代码教程、pycharm 代码教程,进行了比较规范的基于 Pycharm 编辑器进行实现的代码,并且优化了训练过程的代码,请同学们更新后按照视频教程进行运行!
2025-12-13 22:01:41
1234
原创 精品数据分享 | 锂电池数据集(七)同济大学电池数据集
本期继续分享一篇Nature communicationTop论文公开锂离子电池数据,划重点-数据集开源,代码开源!!!
2025-12-11 20:59:23
1906
原创 多源信息融合:数据层融合+特征层融合的故障诊断模型!
继上期推出的基于数据层融合+经典卷积网络的故障诊断合集,本期继续更新:数据层融合+ CNN-LSTM-Transformer的特征层融合的故障诊断模型。
2025-12-10 22:16:01
989
原创 独家首发!基于VMD滚动分解+Transformer-LSTM的并行预测模型
随着时间序列预测在能源、金融、气象等领域的广泛应用,如何提高预测的准确性和稳定性成为研究热点。传统深度学习模型如LSTM虽然擅长捕捉时间序列中的长短期依赖,但面对复杂的非线性信号时效果可能有限。另一方面,Transformer凭借其强大的自注意力机制,在捕捉全局依赖关系上表现优异,但缺乏对局部时序特征的天然敏感性。为了弥补单一模型的不足,本期创新性地提出了一种基于变分模态分解(VMD)滚动分解与Transformer-LSTM并行融合的预测模型框架。该方法利用VMD对时间序列信号进行多模态分解,有效剥离信号
2025-12-08 20:33:01
888
原创 精品数据分享 | 锂电池数据集(六)基于深度迁移学习的锂离子电池实时个性化健康状态预测
本期继续分享一篇 一区TOP 论文:基于深度迁移学习的锂离子电池实时个性化健康状态预测,划重点-数据集开源,代码开源!
2025-12-07 23:11:12
1011
原创 高效对抗噪声!基于深度残差收缩网络(DRSN)的轴承故障诊断模型
本期基于凯斯西储大学(CWRU)轴承数据集,结合深度残差收缩网络(Deep Residual Shrinkage Networks, DRSN)进行轴承故障分类研究。通过引入残差收缩模块,有效抑制噪声和无关信息,提升模型对关键特征的敏感性。基于PyTorch框架,实现了一种1D卷积DRSN模型,评估了其对CWRU数据集不同故障的分类性能。实验结果表明,所提模型在准确率、鲁棒性均优于普通残差网络,验证了深度残差收缩机制在轴承故障诊断中的有效性。
2025-12-04 23:56:30
968
原创 高创新!基于ICEEMDAN+MSCNN-BiGRU-Attention并行预测模型
本期针对电力变压器油温运行数据,提出基于改进完备集合经验模态分解(ICEEMDAN)与多尺度卷积神经网络(MSCNN)结合注意力机制的双向门控循环单元(BiGRU)模型,对多特征时序数据进行高精度预测。模型通过GlobalAttention机制强化特征加权,提升了对序列关键时域信息的感知能力,有效捕捉复杂运行环境下油温变化规律。
2025-12-03 21:54:28
808
原创 基于Python的智能故障诊断系统 | SmartDiag AI (基础版)V1.0 正式发布!
SmartDiag AI 智能故障诊断系统是一款面向教学、科研与工业三层用户的智能化诊断平台,基于 Python + PyQt + PyTorch + 信号处理算法开发。系统以“数据驱动 + 知识融合 + 智能决策”为核心理念,实现从信号采集、特征提取、时频分析、深度学习建模到智能诊断的全流程自动化。
2025-12-02 20:47:21
458
原创 精品数据分享 | 锂电池数据集(五)麻省理工-斯坦福-丰田研究中心电池数据集
本期继续分享来自 Nature Energy 论文的锂电池公开数据集,划重点-数据集开源,代码开源!!!
2025-12-01 19:14:20
1335
原创 独家创新!基于Informer-BiGRUGATT-CrossAttention的预测模型
针对风电功率预测中的长时间依赖与多尺度时空特征建模难点,本期提出一种创新的多模型融合架构——Informer-BiGRUGATT-CrossAttention模型。该模型结合了Informer的高效长序列处理能力与双向门控循环单元(BiGRU)及全局注意力机制(Global Attention)的时序依赖捕获优势,采用交叉注意力机制进行时空特征深度融合。并实现了复杂时间序列的多层次建模,为高精度预测任务提供了新的技术路径。
2025-11-27 22:06:07
1026
原创 创新首发!基于CNN-BiLSTM-KAN模型的滚动轴承剩余使用寿命预测
滚动轴承作为机械设备的关键零部件,其剩余使用寿命(Remaining Useful Life, RUL)预测对于设备健康管理与故障预防具有重要意义。针对轴承振动信号的复杂非线性动态特性,本期提出了一种集成卷积神经网络(CNN)、双向长短时记忆网络(BiLSTM)与KAN网络的混合预测模型。
2025-11-26 21:52:38
913
原创 精品数据分享 | 锂电池数据集(四)PINN+锂离子电池退化稳定性建模和预测
本期继续分享一篇 Nature communication 论文:物理信息神经网络在锂离子电池退化稳定建模和预测中的应用,划重点-数据集开源,代码开源!!!
2025-11-25 16:52:51
941
原创 论文复现!基于SAM-BiGRU网络的锂电池RUL预测
本期基于美国马里兰大学先进生命周期工程研究中心(CALCE)锂电池实验数据,复现了论文《基于SAM-BiGRU网络的锂电池RUL预测》中提出的模型及对比实验。通过对该先进深度学习模型的深入剖析和实验验证,旨在为后续锂电池健康管理系统(Battery Health Management, BHM)研究提供可借鉴的方法路径和数据支持,具有显著的学习和参考价值。
2025-11-24 19:07:42
1215
原创 基于多尺度卷积神经网络(MSCNN-1D)的轴承信号故障诊断模型
针对传统诊断方法对信号特征提取依赖强且准确率有限的问题,本期基于凯斯西储大学(CWRU)轴承数据集,实现基于 Python-Pytorch 框架多尺度卷积神经网络的1维信号处理模型——MSCNN-1D,完成轴承振动信号的高效准确诊断。并更新在轴承故障诊断全家桶中,请同学们更新后按照视频教程进行运行学习!
2025-11-23 22:34:06
843
原创 精品数据分享 | 锂电池数据集(三)西安交通大学(XJTU)电池数据集
本期继续分享西安交通大学电池公开数据集,划重点-数据集开源,代码开源!!!
2025-11-22 16:27:32
1213
原创 独家创新!基于ICEEMDAN+SHAP可解释性分析的锂电池剩余寿命预测高创新模型!
随着锂电池在电动汽车、储能系统等领域的广泛应用,实现对锂电池性能退化及寿命的准确预测成为保障系统安全和经济运行的关键。针对锂电池运行数据通常具有非平稳、多尺度、多变量且存在噪声的特点,本文提出了一种融合信号预处理与深度并行网络架构的创新预测模型——基于ICEEMDAN+Transformer-BiGRUGlobal-Attention并行的锂电池剩余寿命预测模型。并提供结合SHAP理论开展模型可解释性分析,实现准确且透明的电池寿命评估。
2025-11-21 19:42:20
743
原创 创新首发!齿轮箱故障诊断:基于MTF+Swin-Informer的多模态创新模型
本期基于东南大学齿轮箱故障数据集,提出一种结合马尔科夫转移场(Markov Transition Field, MTF)与融合SwinTransformer和Informer的多模态故障诊断创新模型。创新性地解决了齿轮箱故障信号诊断中的信息表达与特征挖掘难题,实现了高效、准确且鲁棒的故障诊断性能。此方法为机械故障诊断领域提供了一条全新的多模态融合思路,拓展了深度学习在工业智能维护中的应用边界。
2025-11-20 22:56:30
1488
原创 精品数据分享 | 锂电池数据集(二)Nature子刊论文公开锂离子电池数据
本期继续分享一篇Nature communicationTop论文公开锂离子电池数据,划重点-数据集开源,代码开源!!!
2025-11-19 19:31:22
1135
原创 基于Informer-SENet的光伏电站发电功率预测对比合集!6组对比预测模型,毕业论文、小论文直接写!
本期基于某光伏电站发电功率数据集,推出一组Informer-SENet预测对比模型合集。包括'LSTM', 'Transformer-encoder', 'Informer', 'Informer-encoder', 'Informer-SENet', 'Informer-encoder-SENet'等6组模型对比实验
2025-11-18 22:35:41
1091
原创 基于密集连接的DenseNet故障诊断模型:实现高鲁棒性的深度故障诊断
本期基于凯斯西储大学(CWRU)轴承数据集,实现基 Python-Pytorch 框架的 DenseNet 网络的故障诊断算法流程实现。并更新在轴承故障诊断全家桶中,请同学们更新后按照视频教程进行运行学习!
2025-11-17 20:02:23
774
原创 精品数据分享 | 锂电池数据集(一)新能源汽车大规模锂离子电池数据集
随着新能源汽车的迅猛发展,锂离子电池作为其核心动力源,性能优化和寿命管理成为产业和科研的重点课题。高质量锂电池数据集的获取与共享,是推动电池技术创新和智能算法研发的关键。
2025-10-27 20:08:11
1293
原创 基于短时傅里叶变换STFT的故障诊断最强教程!搭配讲解视频
本期主要更新基于 Python 的凯斯西储大学(CWRU)轴承数据+短时傅里叶变换教程!
2025-10-21 19:33:02
1094
原创 一区直接写!CEEMDAN分解 + Informer-LSTM +XGBoost组合预测模型
本期我们推出创新性预测模型:CEEMDAN分解+Informer-LSTM+XGBoost组合预测模型。
2025-10-20 21:02:30
1039
原创 重大更新!基于WDCNN的故障诊断模型
本期基于凯斯西储大学(CWRU)轴承数据集,实现基 Python-Pytorch 框架的 WDCNN 网络的故障诊断算法流程实现。并更新在轴承故障诊断全家桶中,请同学们更新后按照视频教程进行运行学习!
2025-10-17 23:42:24
805
原创 基于VMD分解+CNN-Transformer并行的多步预测模型
本文基于前期介绍的电力变压器(文末附数据集),介绍一种基于VMD-CNN-Transformer并行网络的多特征多步预测模型。
2025-10-16 19:36:54
761
原创 多源信息融合+经典卷积网络故障诊断模型合集
本期基于东南大学轴承故障数据集(8个通道信号),进行多源信号数据的预处理讲解,并搭配经典卷积网络VGG、ResNet、深度残差收缩网络DRSN进行故障诊断的完整代码合集。(适合多传感器、多特征列的信号分类任务)
2025-10-15 22:10:10
1150
原创 连续小波变换(CWT)+时间序列预测!融合时频分析与深度学习的预测新思路
本期更新推出一种基于连续小波变换(Continuous Wavelet Transform, CWT)与VGG模型的时间序列预测方法,将传统时频分析技术与深度学习相结合,有效解决了复杂时间序列的建模难题。通过将一维时序信号转换为二维时频图像,充分利用卷积神经网络(CNN)对图像特征的强大提取能力,在保证时序局部特征的同时,显著提升模型对非平稳信号的适应性。
2025-10-14 21:52:52
1070
原创 重大更新!基于VMD+Transformer-BiLSTM-CrossAttention 故障分类模型
本文基于凯斯西储大学(CWRU)轴承数据,利用 VMD 将复杂信号分解为多个本征模态函数(IMFs),从而将原始信号转化为更简单的子信号,最后通过Python实现基于交叉注意力Transformer-BiLSTM-CrossAttention的特征融合模型对故障数据的分类。
2025-10-13 23:49:12
890
原创 继续更新!注意力机制+锂电池剩余寿命预测合集
本期我们针对马里兰大学(CALCE)的锂电池寿命数据集,新增了关于注意力机制的预测模型:BiLSTM-Attention、CNN-Attention、GRU-Attention、TCN-Attention等预测模型,并提供不同窗口值、不同划分比例等对比试验。
2025-10-12 23:24:36
1083
原创 PHM2012 - 基于 Python 的轴承寿命预测模型
本期我们基于 PHM2012 挑战赛滚动轴承全寿命数据,推出基于 Python 的轴承寿命预测模型合集:LSTM、CNN、GRU、TCN、Transformer、CNN-LSTM、CNN-Transformer、Transformer-BiLSTM等系列预测模型全家桶,并提供丰富的实验和解说
2025-05-14 20:14:35
1962
原创 故障诊断模型评估——混淆矩阵,如何使样本量一致(上)
本期我们围绕混淆矩阵的相关问题,推出基于凯斯西储大学(CWRU)轴承数据1DCNN分类模型进行讲解!
2025-05-13 22:39:25
1591
原创 王炸组合!STL-VMD二次分解 + Informer-LSTM 并行预测模型
传统时间序列预测模型(如ARIMA、单一LSTM)在面对多尺度特征(如长周期、短周期、噪声混杂)和非线性动态(如突变、趋势漂移)时表现受限,尤其对以下场景效果不佳:强噪声干扰:工业传感器信号中的高频噪声掩盖真实模式多季节性与趋势耦合:如电力负荷数据(日周期+周周期+节假日趋势)长期依赖与短期波动并存:如股票价格序列针对以上问题,本期提出一种基于STL+VMD二次分解,Informer-LSTM的并行预测模型,该创新模型通过二次分解与混合架构,实现了复杂时间序列的多层次建模,为高精度预测提供了
2025-05-13 22:30:26
1622
基于天气数据的家庭能源消耗
2025-11-26
Matlab Policy iteration & value iteration 代码实现
2025-11-25
十个不同地点生成的合成天气数据
2025-11-24
维斯塔斯V100-变桨-动力-风速
2025-11-24
气象数据集 数据集分享 气象
2025-11-23
纽约市出租车之旅-每小时天气数据
2025-11-23
首尔历史天气数据(1994-2024)
2025-11-23
可再生能源和天气条件 数据集分享
2025-11-22
空气质量和健康影响数据集
2025-11-27
马德里天气数据集每小时2019-2022
2025-11-27
气候洞察数据集 数据集分享
2025-11-27
特端市用电量 数据集分享
2025-11-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅