
算法
文章平均质量分 81
一个新新的小白
一个青年学生来学习
展开
-
GAN网络的理解
工作中会用到GAN网络,现将其基本思路总结如下。GAN网络的核心思想:GAN的核心思想在于对抗,有两部分模型构成,分别是生成模型(generator model)和判别模型(discriminator model)。生成模型用于生成一个逼真的样本,判别模型用于判断模型的输入是真是假。通俗来讲,就是生成模型要不断提升自己的造假本领,最终达到骗过判别模型的目的。而判别模型则不断提升自己的判别能力,达到辨别真假的目的,这也就形成了对抗。生成模型和判别模型处于一个矛盾的关系,那么对抗的结果究竟是什么,这个要取转载 2020-12-28 09:38:49 · 2008 阅读 · 0 评论 -
当卷积层后跟batch normalization层时为什么不要偏置b的解释链接
https://blog.csdn.net/u010698086/article/details/78046671转载 2019-11-18 14:37:05 · 414 阅读 · 0 评论 -
梯度为上升最快方向的解释链接
https://blog.csdn.net/weixin_42398658/article/details/83017995转载 2019-11-18 14:13:05 · 215 阅读 · 0 评论 -
当卷积层后跟batch normalization层时为什么不要偏置b(链接)
https://blog.csdn.net/u010698086/article/details/78046671转载 2019-11-13 17:26:56 · 470 阅读 · 0 评论 -
YOLOv3批量测试图片并保存在自定义文件夹下
YOLOv3的网络训练教程在网上都能找到,最重要是依赖于官网github上的issues解决,如果有些问题不清楚可以百度搜索到,这篇文章主要是针对于训练好自己的网络后的测试命令以及实现批量测试图片并保存的操作: 先说测试并返回评价指标的3个命令1)&nb...转载 2019-01-24 10:50:14 · 3268 阅读 · 0 评论 -
yolo在验证获得检测结果的txt时出现Segmentation fault(core dumped)的解决办法
最近项目上要用到yolo检测,需要获取map数值,则需要检测结果的txt文档。因此需要调用yolo中的valid命令。但是在运行过程中会出现Segmentation fault(core dumped)的问题,如下图在网上查找了很多原因,说是内存指向了空地址什么的,也看不太懂。最后经过多方验证才发现了问题的所在。原因确实是指向了空的地址,是因为在训练的过程中,没有修网络配置文件中的最后一层的...原创 2019-01-25 14:55:42 · 6159 阅读 · 6 评论 -
准确率,召回率,mAP(mean average precision)解释
准确率Precision 召回率Recall 其实这个翻译相当蛋疼。。。recall最合理的翻译应该是 查全率 而Precision的最合理的翻译应该是查准率这样就很容易理解了,假设一个班级有10个学生,5男5女 你用机器找女生,机器返回了一下结果: | 男 | 女 | 女 | 男 | 女 | ...转载 2019-02-21 17:08:59 · 1329 阅读 · 0 评论 -
YOLO系列之yolo v2
yolo_v2论文发表在CVPR2017。v2算法在v1的基础上可以说是飞跃性提升,吸取诸子百家之优势。同时,v2的论文也是目前为止yolo系列论文里干货最多的文章。论文标题:《YOLO9000: Better, Faster, Stronger》 论文地址: https://arxiv.org/pdf...转载 2019-02-21 17:57:44 · 1087 阅读 · 1 评论 -
yolo系列之yolo v3【深度解析】
版权申明:转载和引用图片,都必须经过书面同意。获得留言同意即可本文使用图片多为本人所画,需要高清图片可以留言联系我,先点赞后取图这篇博文比较推荐的yolo v3代码是qwe的keras版本,复现比较容易,代码相对来说比较容易理解。同学们可以结合代码和博文共同理解v3的精髓。github地址:https:...转载 2019-02-21 18:31:59 · 15134 阅读 · 14 评论 -
多目标跟踪综述:Multiple Object Tracking: A Literature Review
原文链接(每年都会更新,现在是v4,2017年5月):Multiple Object Tracking: A Literature Review摘要多目标跟踪因其学术和商业潜力,在计算机视觉中逐渐备受关注。尽管如今已经有多种多样的方法来处理这个课题,但诸如目标重叠、外观剧变等问题仍然是它所面临的重大挑战。在本文中,我们将提供关于多目标...转载 2018-10-16 13:31:41 · 1349 阅读 · 1 评论 -
模型结构可视化神器——Netron(支持tf, caffe, keras,mxnet等多种框架)
很多时候,复现人家工程的时候,需要了解人家的网络结构。但不同框架之间可视化网络层方法不一样,这样给研究人员造成了很大的困扰。 前段时间,发现了一个可视化模型结构的神奇:Netron目前的Netron支持主流各种框架的模型结构可视化工作,我直接给出gayhub链接: https://github.com...转载 2019-02-21 18:33:27 · 1277 阅读 · 1 评论 -
图像扩充用于图像目标检测
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wei_guo_xd/article/details/74199729 </div> <link rel="stylesheet...转载 2018-12-28 15:27:49 · 1156 阅读 · 0 评论 -
Python下opencv使用笔记之hough变换
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/on2way/article/details/47028969 在数字图像中,往往存在着一些特殊形状的几何图形,像检测马路边一条直线,检测人眼的圆形等等,有时我们需要把...转载 2018-11-16 11:48:02 · 8537 阅读 · 1 评论 -
YOLO配置文件理解
http://www.infocool.net/kb/WWW/201703/317548.html[net]batch=64 每batch个样本更新一次参数。subdivisions=8 如果内存不够大,将batch分割为subdivisions...转载 2018-11-01 14:07:39 · 3314 阅读 · 1 评论 -
YOLO算法的原理与实现
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xiaohu2022/article/details/79211732 码字不易,欢迎给个赞!欢迎交流与转载,文章会同步发布在公众号:机器学习算法全栈工程师(Jeem...转载 2018-11-01 13:51:00 · 3449 阅读 · 0 评论 -
YOLOv2源码分析(三)
版权声明:本文为博主原创文章,未经博主允许不得转载。有事联系:coordinate@live.com https://blog.csdn.net/qq_17550379/article/details/78850099 文章全部YOLOv2源码分析接着上一讲没有讲...转载 2018-11-01 10:02:39 · 314 阅读 · 0 评论 -
YOLOv2源码分析(一)
版权声明:本文为博主原创文章,未经博主允许不得转载。有事联系:coordinate@live.com https://blog.csdn.net/qq_17550379/article/details/78831394 文章全部YOLOv2源码分析0x00 写在开...转载 2018-11-01 09:32:34 · 1265 阅读 · 0 评论 -
YOLOv2源码分析(二)
版权声明:本文为博主原创文章,未经博主允许不得转载。有事联系:coordinate@live.com https://blog.csdn.net/qq_17550379/article/details/78850099 文章全部YOLOv2源码分析接着上一讲没有讲...转载 2018-11-01 09:30:36 · 568 阅读 · 1 评论 -
YOLOv2源码分析(四)
版权声明:本文为博主原创文章,未经博主允许不得转载。有事联系:coordinate@live.com https://blog.csdn.net/qq_17550379/article/details/78865475 文章全部YOLOv2源码分析0x01 bac...转载 2018-11-01 09:29:27 · 734 阅读 · 0 评论 -
YOLOv2源码分析(五)
版权声明:本文为博主原创文章,未经博主允许不得转载。有事联系:coordinate@live.com https://blog.csdn.net/qq_17550379/article/details/78875613 文章全部YOLOv2源码分析0x01 mak...转载 2018-11-01 09:28:29 · 397 阅读 · 0 评论 -
YOLOv2源码分析(六)
版权声明:本文为博主原创文章,未经博主允许不得转载。有事联系:coordinate@live.com https://blog.csdn.net/qq_17550379/article/details/78911984 文章全部YOLOv2源码分析我们再次回到了p...转载 2018-11-01 09:26:45 · 300 阅读 · 0 评论 -
YOLOv2和YOLOv3的anchor大小有什么区别?
在YOLOv2中,作者用最后一层feature map的相对大小来定义anchor大小。也就是说,在YOLOv2中,输入图像大小为416*416,下采样32倍得到最后一层feature map大小为13X13,相对的anchor大小范围就在(0x0,13x13],如果一个anchor大小是9x9,那么其在原图...转载 2019-02-21 18:37:58 · 2240 阅读 · 1 评论 -
Yolo 目标检测总结帖(yolov3,yolov2)
由于项目的需求,需要完成一个目标检测的任务,经过个人一段时间的实践,现将自己实现的功能以及体验过的事情在这里做个总结,以便后续查看,也让其它人少走一些弯路,在这个过程中参考了一些博客,便于入门与提升。个人将大多数的时间花费在yolov3上,其精度效果会比yolov2的效果要好,但仿真和测试时...转载 2019-02-22 09:17:20 · 1532 阅读 · 0 评论 -
YOLOv3训练自己的数据集(3)——小技巧和训练日志可视化
https://blog.csdn.net/csdn_zhishui/article/details/85397380原创 2019-08-06 16:12:17 · 1753 阅读 · 0 评论 -
yolov2讲解比较透彻的网址
https://blog.csdn.net/lwplwf/article/details/82895409转载 2019-07-24 10:32:06 · 857 阅读 · 0 评论 -
神经网络中Epoch、Iteration、Batchsize相关理解和说明
版权声明:本文为博主原创文章,欢迎大家转载,但是要注明我的文章地址。 https://blog.csdn.net/program_developer/article/details/78597738 </div> <link rel="stylesh...转载 2019-04-25 16:35:30 · 1220 阅读 · 0 评论 -
深度学习中的attention机制
最近两年,注意力模型(Attention Model)被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中,是深度学习技术中最值得关注与深入了解的核心技术之一。本文以机器翻译为例,深入浅出地介绍了深度学习中注意力机制的原理及关键计算机制,同时也抽象出其本质思想,并介绍了...转载 2019-04-15 14:26:12 · 5673 阅读 · 1 评论 -
tensorflow:rnn中的output和state
原文:https://xdrush.github.io/2018/02/12/RNN%E5%8E%9F%E7%90%86%E8%AF%A6%E8%A7%A3%E4%BB%A5%E5%8F%8Atensorflow%E4%B8%AD%E7%9A%84RNN%E5%AE%9E%E7%8E%B0...原创 2019-04-17 17:27:40 · 6370 阅读 · 0 评论 -
LSTM中state 与 output关系
本文通过简单的实验说明lstm中 state与output之间的关系假设参数如下:batch_size = 4 # 训练语料中一共有4句话sequeue_len = 5 # 每句话只有5个词语ebedding = 6 # 每个词语的词向量维度为 6hidden_size = 10 # 神经元...转载 2019-04-17 17:04:39 · 1300 阅读 · 1 评论 -
透彻理解高斯过程Gaussian Process (GP)
透彻理解高斯过程Gaussian Process (GP)一、整体说说为了理解高斯过程,我们就首先需要了解如下预备知识,即:高斯分布(函数)、随机过程、以及贝叶斯概率等。明白了这些预备知识之后才能顺利进入高斯过程,了解高斯过程本质及其高斯过程描述方法。人们又将高斯过程与贝叶斯概率有机结合...转载 2019-04-26 13:53:22 · 5814 阅读 · 3 评论 -
边框回归:BoundingBox-Regression(BBR)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/v1_vivian/article/details/80292569 </div> <div id="content_views...转载 2019-04-02 16:58:34 · 388 阅读 · 0 评论 -
Detection基础模块之(二)mAP
版权声明: https://blog.csdn.net/weixin_41278720/article/details/88792735 </div> <link rel="stylesheet" href="https://csdnimg.cn/release/phoenix/template/css/ck_htmledi...转载 2019-04-04 14:32:31 · 1492 阅读 · 0 评论 -
yolov3模型微调相关
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/watermelon1123/article/details/83001806 </div> <link rel="styles...转载 2019-03-26 09:41:28 · 1051 阅读 · 1 评论 -
在VS2013中编译高版本平台的工程时会出现无法解析的外部符号 snprintf或者无法找到该标识符的解决办法
最近项目上会用到Windows版的yolo检测算法,但是在编译过程中,所有的代码层面上的错误均解决后以为可以愉快的训练了,但是事与愿违,出现了一个意想不到的错误:该错误为snprintf函数的错误,无法加载其对应的静态库。snprintf() 函数的式跟printf一样, 是正在c内里用的函数,包括正在 #include stdio.h头文件中。 但snprintf()函数并非规范c/c中规则...原创 2019-03-22 11:00:41 · 1984 阅读 · 0 评论 -
深度学习中的动量
动量的优点虽然随机梯度下降仍然是非常受欢迎的优化方法,但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。 动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。 动量的效果如下图所示。 动量的主要目的是解决两个问...转载 2019-03-08 10:09:25 · 1784 阅读 · 0 评论 -
FPN详解
论文题目:Feature Pyramid Networks for Object Detection论文链接:论文链接论文代码:Caffe版本代码链接一、FPN初探1. 图像金字塔图1 图像金字塔图2 高斯金字塔效果如上图所示,这是一个图像金字塔,做CV的你肯定很熟悉,因为在很多的经典算法里面都有它的身影,比...转载 2019-03-20 14:53:31 · 2585 阅读 · 0 评论 -
趣写算法系列之--匈牙利算法
【书本上的算法往往讲得非常复杂,我和我的朋友计划用一些简单通俗的例子来描述算法的流程】匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。-------等等,看得头大?那么请...转载 2019-03-04 11:34:36 · 202 阅读 · 0 评论 -
caffe编译时出现opencv类似于cv::xx没有定义或者无法连接问题的解决方法总结
最近在编译基于caffe修改的工程的时候总是会出现opencv报错导致caffe编译不通过的问题,很是困扰。问题一般为:cv::xx没有定义或者无法连接在Windows系统下开发工程时出现这种问题的原因一般有两种:1:在vs的工程属性中没有将opencv相关的库和文件包含目录以及库目录,导致工程无法链接到和opencv相关的静态库这种问题的解决办法:将自己电脑本地上的opencv相关的文件...原创 2019-03-06 10:00:24 · 1389 阅读 · 0 评论 -
YOLO_V3 原理以及训练说明
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/chandanyan8568/article/details/81089083 </div> <link rel="styles...转载 2019-02-25 15:06:11 · 5273 阅读 · 0 评论 -
非极大值抑制NMS
NMS(non maximum suppression),中文名非极大值抑制,在很多计算机视觉任务中都有广泛应用,如:边缘检测、目标检测等。这里主要以人脸检测中的应用为例,来说明NMS,并给出Matlab和C++示例程序。 人脸检测的一些概念(1) 绝大部分人脸检测器的核心是分类器,即给定一个尺寸固定图片,分类器判断是或者不是人脸;(2)将分类器进化为检测器的关键是:在原始图像上从多个尺度产生窗口,转载 2017-10-26 14:43:28 · 293 阅读 · 0 评论