Python数据分析
Python小学生
单丝不成线 ,独木不成林。
展开
-
数据分析-Numpy模块
简介:Numpy:Numeric Python。 - 一个强大的N维数组对象Array - 比较成熟的(广播)函数库 - 用于整合C/C++和Fortran代码的工具包 - 实用的线性代数、傅里叶变换和随机数生成函数 - numpy和稀疏矩阵运算包scipy配合使用更加强大导入numpy库,并查看numpy版本import numpy as npnp.__version__01-创建nd原创 2017-10-23 20:17:47 · 418 阅读 · 0 评论 -
数据分析之Matplotlib绘图-02
04-四图直方图n = np.random.randn(10000)#普通直方图fig,axes = plt.subplots(1,2,figsize = (12,4))axes[0].hist(n,bins = 50)axes[0].set_title('Default histogram')axes[0].set_xlim(min(n),max(n))# 累计直方图axes[1].h原创 2017-10-31 19:56:34 · 743 阅读 · 0 评论 -
Jupyter高级操作
01-启动程序执行以下命令: jupyter notebook[NotebookApp] Serving notebooks from local directory: /home/nanfengpo[NotebookApp] 0 active kernels[NotebookApp] The IPython Notebook is running at: http://localhost原创 2017-10-23 19:30:40 · 3427 阅读 · 0 评论 -
数据分析之Matplotlib绘图-01
01-图片的灰度化处理(1)最大值法使转化后的R,G,B的值等于转化前的3个值中的最大的一个,即:R=G=B=max(R,G,B)这种转化的灰度图亮度很高im_data1 = im_data.max(axis = 2)(2)平均值法使转化后的R,G,B的值等于转化前的3个的平均值,即:R=G=B=(R+G+B)/3这种方法产生的灰度图像比较柔和。im_data2 = im_data.原创 2017-10-30 19:33:39 · 561 阅读 · 0 评论 -
数据分析之Scipy-输入输出和图片处理
01简介Scipy依赖于NumpyScipy提供了真正的矩阵Scipy包含的功能:最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解器等Scipy是高端科学计算工具包Scipy由一些特定功能的子模块组成02-输入输出输入:from scipy import io as spioimport numpy as npa = np.ones((原创 2017-10-28 22:08:22 · 794 阅读 · 0 评论 -
数据分析之Pandas-03绘图函数
01-线型图简单的Series图标示例np.random.seed(0)s = Series(np.random.randn(10).cumsum(),index = np.arange(0,100,10))s.plot()简单的DataFrame图标示例np.random.seed(0)df = DataFrame(np.random.randn(10,4).cumsum(0),原创 2017-10-28 21:59:09 · 490 阅读 · 0 评论 -
数据分析之Pandas-03多行索引和数据处理
01-多层行索引进行切片,有些汉字出问题,有些没问题02-Pandas数据处理删除重复元素df = DataFrame({'color':['white','white','red','red','white'], 'value':[2,1,3,3,2]})display(df,df.duplicated(),df.drop_duplicates())映射repl原创 2017-10-28 21:46:56 · 369 阅读 · 0 评论 -
数据分析之Pandas-02多层次化索引和拼接
01-Pandas层次化索引创建多层索引1.隐式构造 Series也可以创建多层索引df = DataFrame(np.random.rand(4,2), index=[['a','a','b','b'],[1,2,1,2]], columns=['data1','data2'])df2.显示构造(Multilndex) - pd.Mu原创 2017-10-28 20:52:23 · 3355 阅读 · 0 评论 -
数据分析之Pandas-01Series和DataFrame
01-什么是PandasPython Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。它使Python成为强大而高效的数据分析环境的重要因素之一。02-导入它使P原创 2017-10-28 19:47:56 · 420 阅读 · 0 评论 -
数据分析之Pandas-05数据加载
01-读取文本格式数据pandas提供了一些用于将表格型数据读取为DataFrame对象的函数02-最常用read_csv:从文件中加载带分隔符的数据,默认分隔符为逗号read_table:从文件中加载带分隔符的数据,默认分隔符为制表符03-读取数据库数据导包import pandas as pdimport sqlite3读取数据con = sqlite3.connect("../data/原创 2017-10-31 20:34:09 · 330 阅读 · 0 评论