math
Lomidly
There are global, not enough for you to find a domain; Not for all, not for a moment.
展开
-
正交矩阵和Gram-Schmidt正交化
在关于投影矩阵的部分,根据Strang的授课内容,我进行简单的归纳总结.知道了投影矩阵是什么,有什么用.这篇文章仍然是关于投影矩阵的一个应用.什么是正交矩阵和Gram-Schmidt正交化,相信学过线性代数的朋友们都知道.这里,我只想说标准正交化和标准正交矩阵带来的好处.标准正交化(orthonormal)的定义是:如果向量q1,q2,...,qn满足下式则q1,q2,转载 2017-04-11 10:44:41 · 1886 阅读 · 1 评论 -
投影矩阵与最小二乘(一)
投影矩阵与最小二乘二者有什么必然的联系么,当我开始写这篇文章的时候我也这样问自己。如果Strang教授没有教授这堂课亦或者讲的这堂课没有被放到网上被别人所下载观看,那么...好在一切都是那么的幸运先说说投影吧,这个想必大家都知道,高中的知识了。一个向量(b)在另一个向量(a)上的投影:实际上就是寻找在a上离b最近的点。如果我们把p看作是a的估计值,那么我们定义e = b - p转载 2017-04-11 10:45:55 · 875 阅读 · 0 评论 -
投影矩阵与最小二乘(二)
咱们继续说最小二乘的故事,因为Strang把这些东西以一种非常直观的形式串联起来,使我迫不及待地想写一些心得在上回,我们得到了一个十分重要的东西,投影矩阵:p = A(A'A)-1A'我们依然以在(一)中的那张投影图为例,b在平面上的投影是p,如果b垂直于C(A),那么b就在A的左零空间里,即Pb = 0。如果b本身就在A的列空间里,那么有Ax = b和Pb = b。我们简要推导下上面转载 2017-04-11 10:46:36 · 442 阅读 · 0 评论 -
投影矩阵与最小二乘(三)
其实这篇文章作为投影矩阵与最小二乘的完结篇,已经不完全是投影矩阵与最小二乘的关系了,更多的是在投影矩阵的基础上发展出来的一些理论先说一下标准正交矩阵的概念:对于一个矩阵A,如果A的列向量是标准正交的,那么A'A = I(很容易证明)。如果A的列向量既是标准正交的,又是一个方阵(A is a square orthonormal matrix),那么A就称作正交矩阵。由之前A'A = I转载 2017-04-11 10:48:21 · 542 阅读 · 0 评论