204_矩阵乘幂多项式 Matrix power series (POJ 3233)

给定一个nXn的矩阵A 和正整数k,m。如果

 S=A+A^2+A^3+.........A^k,

求个元素对吗取余数后的结果。

同样,根据矩阵递推出关于k的式子,用乘幂的方法解决。



题源来自《挑战程序竞赛》第二版 204页。


//
//  204_Matrix power series (POJ 3233).cpp
//  changlle
//
//  Created by user on 1/28/16.
//  Copyright (c) 2016 user. All rights reserved.
//

#include <iostream>
#include <vector>
using namespace std;

typedef vector<int> vec;
typedef vector<vec> mat;
typedef long long ll;

const int M=4;

int n=2;
int k=2;
mat A(2,vec(2));

mat mul(mat& A, mat& B){
    mat C(A.size(),vec(B[0].size()));
    for (int i=0;i<A.size();i++)
        for (int k=0;k<B.size();k++)
            for (int j=0;j<B[0].size();j++)
                C[i][j]=C[i][j]+A[i][k]*B[k][j];
    return C;
}

mat pow (mat A, ll n ){
    mat B(A.size(),vec(A[0].size()));
    for (int i=0;i<A.size();i++)
        B[i][i]=1;
    
    while (n>0) {
        if (n &1) B=mul(B,A);
        A=mul(A,A);
        n>>=1;
    }
    return B;
    
}

void solve (){
    mat B(n*2, vec(n*2));
    
    for (int i=0;i<n;i++) {
        for (int j=0;j<n;j++)
            B[i][j]=A[i][j];
    
    B[n+i][i]=B[n+i][n+i]=1;
    }
    
    B=pow(B,k+1); //I+A+A^2+......A^k
    
    for (int i=0;i<n;i++){
        for (int j=0;j<n;j++){
            int a=B[n+i][j];
            if (i==j) a=a-1;
            a=a%M;
            cout<<a<<"  ";
        }
        cout<<endl;
    }
}

int main() {
    
    A[0][0]=0; A[0][1]=1;
    A[1][0]=1; A[1][1]=1;
    
    solve();
    
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值