数据挖掘常用算法原理

本文详细介绍了机器学习中的几种常见算法,包括朴素贝叶斯、决策树、逻辑回归、线性回归、KNN算法、SVM、Adaboost、聚类算法以及推荐系统中的协同过滤和矩阵分解。每种算法的原理、优缺点和应用场景都有所阐述,旨在帮助读者深入理解机器学习的基础知识和实际应用。
摘要由CSDN通过智能技术生成

作为一个统计出身的数据人,学习机器学习更要学习原理。对于数学原理透彻理解,不论是模型优化还是参数调整都将是一个很好的理论功底。在此参照网上一篇理论博文,再学习理解一遍。

常见机器学习算法(主要是一些常规分类器)大概流程和主要思想。

朴素贝叶斯:
  有以下几个地方需要注意:

1. 如果给出的特征向量长度不同,这是需要归一化为同长度的向量(这里以文本分类为例),比如说是句子中的单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。【特征就是 我们做分析挖掘要用到的自变量,据实例定义】

2. 计算公式如下:
在这里插入图片描述
此处‘w’ 就是 特征,ci 便是类别。
  其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是 在这里插入图片描述的计算方法,而由朴素贝叶斯的前提假设【之所以称之为朴素,也是因为该性质,假设 变量的独立性】可知,在这里插入图片描述 =在这里插入图片描述,因此计算方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。

3. 如果在这里插入图片描述 中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace光滑【保证分母不为0】, 分母加k的原因是使之满足全概率公式)。

朴素贝叶斯的优点:

对小规模的数据表现很好,适合多分类任务,适合增量式训练。

缺点:

对输入数据的表达形式很敏感。

决策树:
  
  决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

信息熵的计算公式如下:在这里插入图片描述
  其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。【GINI系数小的指标作为划分属性,或是信息增益大的属性进行分枝】
  现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1H1+p2H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。

决策树的优点:
  计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征;

缺点:
  容易过拟合(后续出现了随机森林,减小了过拟合现象);
  
  Logistic回归:
  Logistic是用来分类的,是一种线性分类器,需要注意的地方有:
  1. logistic函数表达式为:
在这里插入图片描述
  其导数形式为:
在这里插入图片描述
逻辑回归的损失函数: cost(hθ(x),y): if y=1: −log(hθ(x)),if y=0:−log(1−hθ(x))。
全体样本的损失函数可写为:cost(hθ(x),y)=∑−yi*log(hθ(x))−(1−yi)log(1−hθ(x)) 恰与后面对数似然函数相差一个符号(-)。
  2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为:
在这里插入图片描述
  到整个样本的后验概率:在这里插入图片描述
  其中:在这里插入图片描述
  通过对数进一步化简为:在这里插入图片描述
  3. 其实它的loss function为
*-l(θ)**,因此我们需使loss function最小,可采用梯度下降法得到。
  梯度下降法公式为:在这里插入图片描述在这里插入图片描述
  Logistic回归优点:

1、实现简单;
2、分类时计算量非常小,速度很快,存储资源低;
  缺点:
  1、容易欠拟合,一般准确度不太高
  2、只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;
  
  线性回归:
  线性回归才是真正用于回归的,而不像logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为:

系统化地阐述了数据挖掘和知识发现技术的产生、发展、应用和相关概念、原理算法。对数据挖掘中的主要技术分支,包括关联规则、分类、聚类、序列、空间以及Web挖掘等进行了理论剖析和算法描述。本书的许多工作是作者们在攻读博士学位期间的工作总结,一方面,对于相关概念和技术的阐述尽量先从理论分析入手,在此基础上进行技术归纳。另一方面,为了保证技术的系统性,所有的挖掘模型和算法描述都在统一的技术归纳框架下进行。同时,为了避免抽象算法描述给读者带来的理解困难,本书的所有典型算法都通过具体跟踪执行实例来进一步说明。本书共分8章,各章相对独立成篇,以利于读者选择性学习。在每章后面都设置专门一节来对本章内容和文献引用情况进行归纳,它不仅可以帮助读者对相关内容进行整理,而且也起到对本内容相关文献的注释性索引功能。第1章是绪论,系统地介绍了数据挖掘产生的商业和技术背景,从不同侧面剖析了数据挖掘的概念和应用价值;第2章给出了知识发现的过程分析和应用体系结构设计;第3章对关联规则挖掘的原理算法进行全面阐述;第4章给出分类的主要理论和算法描述;第5章讨论聚类的常用技术和算法;第6章对时间序列分析技术和序列挖掘算法进行论述;第7章系统地介绍了Web挖掘的主要研究领域和相关技术及算法;第8章是对空间数据挖掘技术和算法的分析和讲述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值