大于255的数据转换为uint8(Python VS MATLAB)

问题背景

在python中使用函数tf.reduce_mean()时,对uint8类型(0—255)的图像数据求平均值,但发现求得的并不准确,这主要是在求平均值时,未将数据转换为更高精度类型(uint16,float32等等)。

代码展示

  • 未转换数据类型
import numpy as np
import tensorflow as tf
img=np.array([[200,200],[200,200]],dtype=np.uint8)
sess=tf.compat.v1.InteractiveSession()
sess.run(tf.global_variables_initializer())
print(tf.reduce_mean(img).eval() )
sess.close()   #此代码输出值为8

很明显,并不准确。 

  • 转换数据类型 
import numpy as np
import tensorflow as tf
img=np.array([[200,200],[200,200]],dtype=np.uint8)
img1=tf.cast(img,tf.uint16)
img2=tf.cast(img,tf.float32)
sess=tf.compat.v1.InteractiveSession()
sess.run(tf.global_variables_initializer())
print(tf.reduce_mean(img1).eval() )  #输出200
print(tf.reduce_mean(img2).eval() )  #输出200.0
sess.close()

类型转换后,正确。

基于上面的问题,发现了Python将大于255的数值转换为uint8类型的数据与MATLAB的不同。

我们基于上面的代码,4个200相加是800,二进制可表示为:

程序算的是8*4=32, 二进制可表示为:

 这两个数字 低 前8位是相同的,所以Python将大于255的数据转换为uint8数据类型,只取二进制低 前 8位所得数值(屡试不爽)。这与MATLAB是不同的,MATLAB中大于255的数据通通转化为255。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值