1.1 数据结构-时间复杂度计算

这篇博客总结了时间复杂度的定义,计算方式和形式表现,详细介绍了如何通过基本操作次数、忽略低次幂和系数来确定算法的时间复杂度,并通过实例解析了不同类型的循环结构对时间复杂度的影响。
摘要由CSDN通过智能技术生成

时间复杂度计算总结

内容概述:归纳总结时间复杂度计算方式,分为两种题型,一种解答方式。

时间复杂度定义:

在计算机科学中,是指定量描述该算法的运行时间。简单来说就是一个函数,根据算法的复杂程度,输入的数据规模大小,完成算法所需要的时间。通常使用大O符号表示,不包括函数的低阶项和首项系数。并且,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。
以下从维基百科统计的一些常用时间复杂度类别表中,其中,poly(x) = xO(1),也就是x的多项式
这里写图片描述

计算方式

表示算法规模大小的函数用T(n)表示,若某个辅助函数f(n),使得当n趋于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n),计算步骤如下:

  1. 计算算法的基本操作的执行次数T(n)
    基本操作是指算法中的每条语句,语句的执行次数又被称为语句的频度。并且,在做算法分析时,一般默认考虑最坏的情况。

  2. 计算出T(n)的数量级
    进行如下操作,忽略常量,低次幂和最高次幂的系数。

  3. 用大O来表示时间复杂度
    在n->无穷大时,T(n)/f(n)的值不等于0的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n))。

举例说明

/**
Author:Armyer
**/
int i,j;
for(i = 0;i<n;i++)
{
    for(j = 0;j<i;j++)
    {
        printf("%d\n",j);
    }
}

解答:
1. 基本操作次数T(n)=时间复杂度
即T(n)=n(n+1)/2

  1. 忽略T(n)中的常量、低次幂和最高次幂的系数,f(n)=n^2

  2. 在n->无穷大时,lim(T(n)/f(n))=1/2。即算法时间复杂度为n^2

形式表现

  • 1.循环主体中的变量参与循环条件的判断
    此类型应该找出主体语句中与T(n)成正比的循环变量,并将其带入条件进行计算。
    举例
/**
Author:Armyer
int i=1;
while(i<n)
    i=i*2;
**/

解答:
i乘以2的次数为主体语句的执行次数t,固有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值