时间复杂度计算总结
内容概述:归纳总结时间复杂度计算方式,分为两种题型,一种解答方式。
时间复杂度定义:
在计算机科学中,是指定量描述该算法的运行时间。简单来说就是一个函数,根据算法的复杂程度,输入的数据规模大小,完成算法所需要的时间。通常使用大O符号表示,不包括函数的低阶项和首项系数。并且,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。
以下从维基百科统计的一些常用时间复杂度类别表中,其中,poly(x) = xO(1),也就是x的多项式
计算方式
表示算法规模大小的函数用T(n)表示,若某个辅助函数f(n),使得当n趋于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n),计算步骤如下:
计算算法的基本操作的执行次数T(n)
基本操作是指算法中的每条语句,语句的执行次数又被称为语句的频度。并且,在做算法分析时,一般默认考虑最坏的情况。计算出T(n)的数量级
进行如下操作,忽略常量,低次幂和最高次幂的系数。- 用大O来表示时间复杂度
在n->无穷大时,T(n)/f(n)的值不等于0的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n))。
举例说明
/**
Author:Armyer
**/
int i,j;
for(i = 0;i<n;i++)
{
for(j = 0;j<i;j++)
{
printf("%d\n",j);
}
}
解答:
1. 基本操作次数T(n)=
即T(n)=n(n+1)/2
忽略T(n)中的常量、低次幂和最高次幂的系数,f(n)=n^2
在n->无穷大时,lim(T(n)/f(n))=1/2。即算法时间复杂度为n^2
形式表现
- 1.循环主体中的变量参与循环条件的判断
此类型应该找出主体语句中与T(n)成正比的循环变量,并将其带入条件进行计算。
举例
/**
Author:Armyer
int i=1;
while(i<n)
i=i*2;
**/
解答:
i乘以2的次数为主体语句的执行次数t,固有